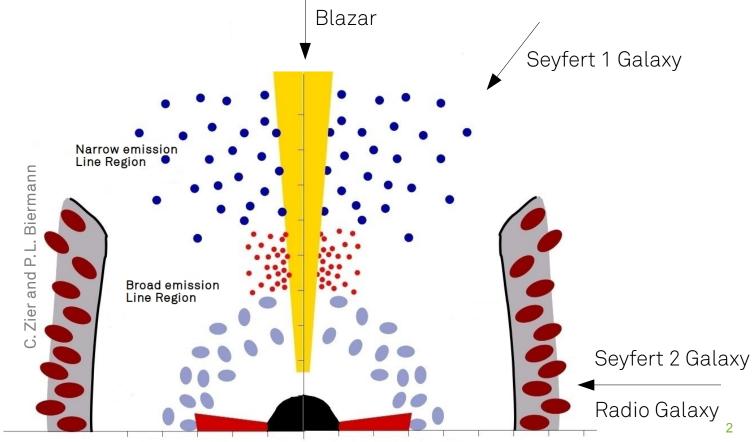


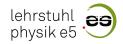


Search for Sources of Rare Types by Cluster Analysis

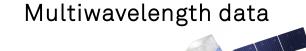
Simone Mender


School for Astroparticle Physics

October 4-12, 2017


Motivation

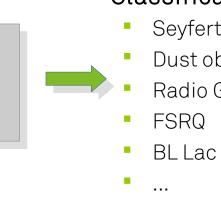
- Multimessenger analysis
- Different classification tasks
- Examination of theoretical models
- Improve the comprehension of extragalactic source types
- Search for rare source types


S. Mender

Accretion disk and black hole

Classification through Machine Learning

http://www.spacete lescope.org/news/h eic1305/



arXiv:1410.5073



Classification

- Seyfert galaxy
 - Dust obscured blazar
- Radio Galaxy

http://www.spacetelescope.org/images/opo1247a/

Classification through Machine Learning

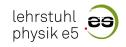
Multiwavelength data

Classification

Supervised machine learning

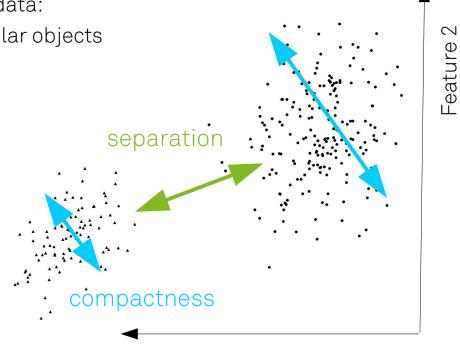
- Training of model with labeled data, e.g. Decision Tree
- Data into trained model
 → estimation of a label

Unsupervised machine learning

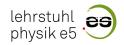

- Detection of patterns in the input data
- Example: Cluster Analysis
 Creation of groups/clusters of similar objects

Need labeled data to train the model

No need for labeled data

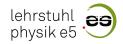


Cluster Analysis

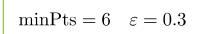

- Detection of patterns in the input data:
 Creation of groups/clusters of similar objects
- Different clusters should be
 - compact
 - separated from each other

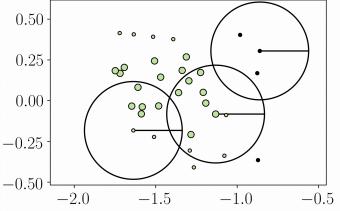
Procedure of Cluster Analysis

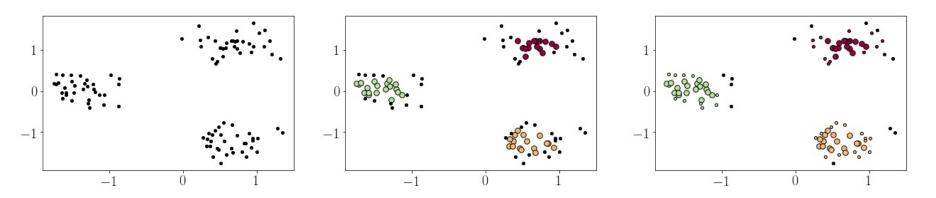
- 1) Feature selection
- 2) Use of different algorithms
- 3) Validation of the results
- 4) Choose the best Cluster Analysis



Feature 1

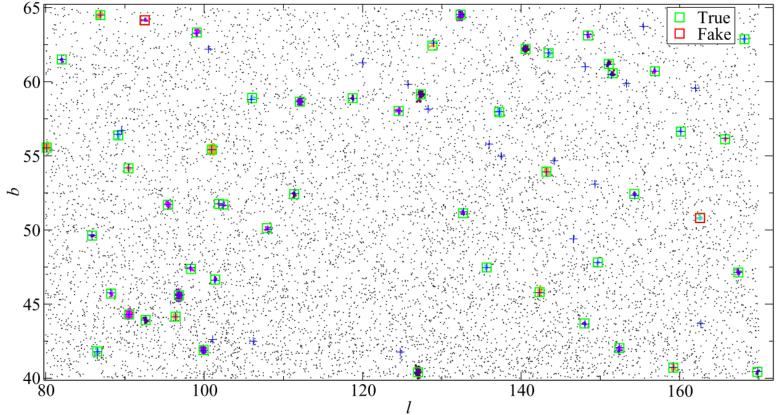

Different Methods of Cluster Analysis

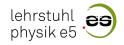

- Partitional Clustering: optimization of a certain criterion
- Hierarchical Clustering: seeks to build a hierarchy of clusters
- Density-based Clustering: separation due to dense and less dense regions




Density-Based Clustering

- Separation due to dense and less dense regions
- DBSCAN:
 - dependent on 2 parameters: minPts, ε
 - divides the data points into core points, reachable _____
 points and outliers _____




Cluster Algorithms in Astroparticle Physics

A. Tramacere and C. Vecchio (2012):

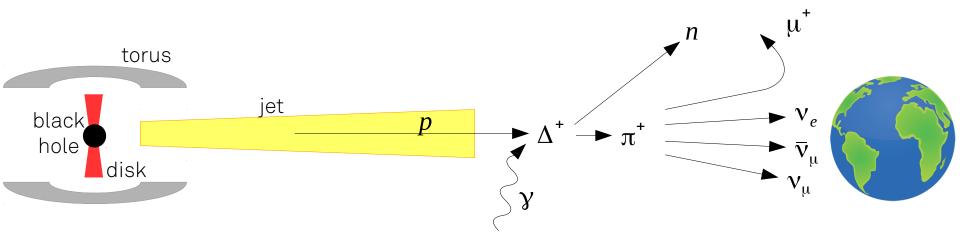
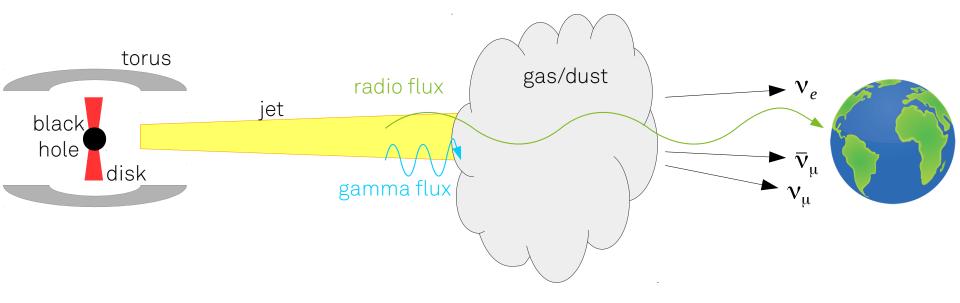

- DBSCAN algorithm applied to *Fermi*-LAT data \rightarrow detection of clusters in γ -ray data
- Method can be used to look for point-like sources and extended sources

Fig. 1. Photon map for the *sky* test field 1, with the result of the γ -ray DBSCAN detection for K = 5 and $\varepsilon = 0.17$ deg. The blue crosses refer to the simulated sources, the green boxes to 51 detected *true* clusters, and the red boxes to the 2 *fake* ones. The black dots represent the background events, the remaining colors indicate cluster events.

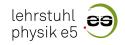
(Dust Obscured) Blazars: What makes them interesting?

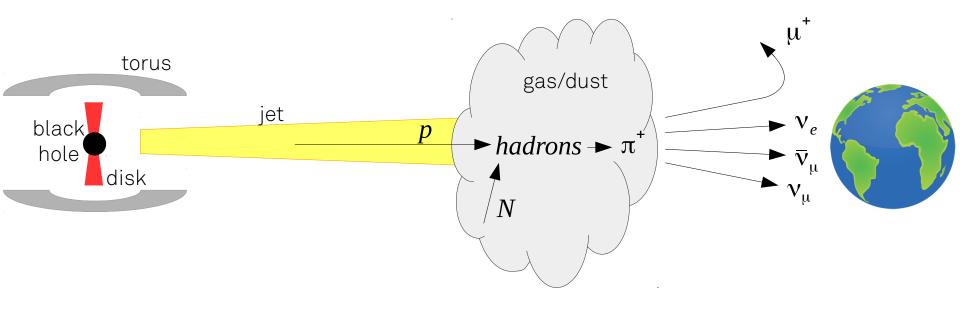
IceCube Collaboration:

Analysis of the 4-year IceCube highenergy starting events (2016)


- 2010 2014: 52 neutrinos
 20 TeV > E > 2 PeV
- Source of high-energy neutrinos is still unknown

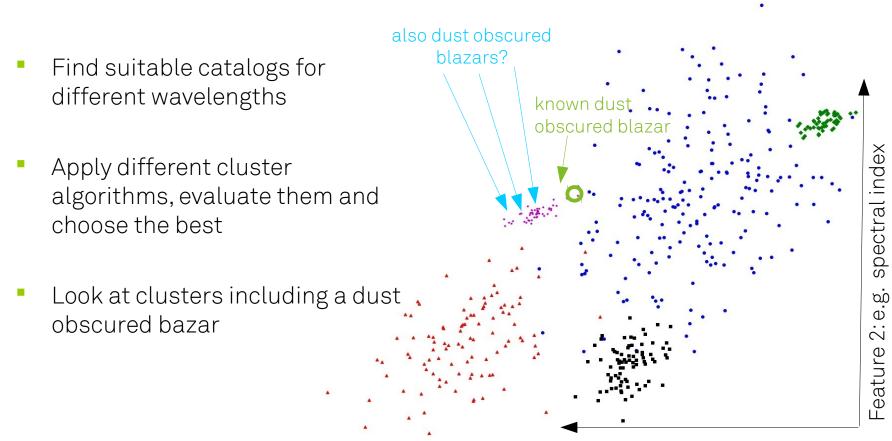
The Contribution of Fermi-2LAC Blazars to the diffuse TeV-PeV Neutrino Flux (2016)


- Blazars may be high-energy neutrino source
- 2LAC blazars can only explain 27 % of the high-energy neutrino flux

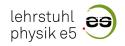

Dust Obscured Blazars: What do we expect?

- Proton-proton interaction
 → increasing neutrino flux
- AGN with jet pointing towards us
 → high radio flux
- Attenuation of emission at high frequencies through the dust
 - → low X-ray flux
 - → no gamma-ray flux

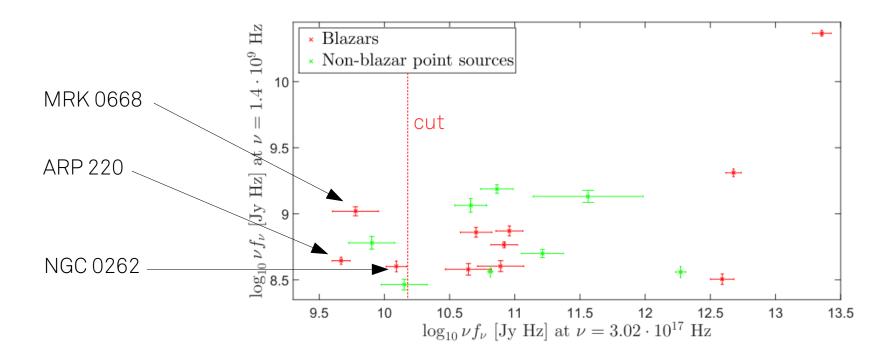
Dust Obscured Blazars: What makes them interesting?




Dust obscured blazars could be a source for high-energy neutrinos


Outlook: How to find Dust Obscured Blazars with Clustering?

Feature 1:e.g. a flux ratio


Backup

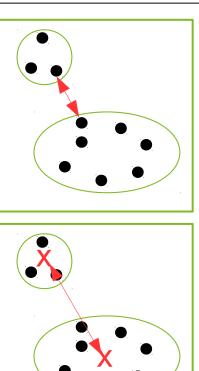
Dust Obscured Blazars

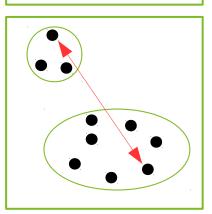
G. Maggi et al. (2016):

- Search for high-energy neutrinos from dust obscured Blazars
- Cut at an X-ray flux of $\log_{10} \nu F_{\nu} = 10.2 \, \mathrm{Jy \, Hz}$
- Three interesting objects

Distance functions:

Single Linkage:

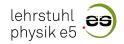

$$d_{\text{single-l}}(A, B) = \min_{a \in A, b \in B} \left\{ d(a, b) \right\}$$


Average linkage:


 $d_{\text{average-l}}(A,B) = \text{mean}\left(d(a,b)\right)$

Complete Linkage

$$d_{\text{complete-l}}(A, B) = \max_{a \in A, b \in B} \left\{ d(a, b) \right\}$$



Why Feature Selection?

Curse of dimensionality

• 1 dimension: 100 data points

Same density in 10 dimensions:
 100¹⁰ data points = 10²⁰ data points

Pion Decay:

π^+ DECAY MODES

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

	Mode		Fraction (Γ_i/Γ)			Confidence level	
Г1	$\mu^+ u_\mu$		[a]	[a] (99.98770±0.00004)%			
Γ2	$\mu^+ u_\mu \gamma$		[<i>b</i>]	(2.00	± 0.25	$) \times 10^{-4}$	
Γ ₃	$e^+\nu_e$		[a]	(1.230	± 0.004) × 10 ⁻⁴	
Γ ₄	$e^+ \nu_e \gamma$		[<i>b</i>]	(7.39	± 0.05	$) \times 10^{-7}$	
Γ ₅	$e^+ \nu_e \pi^0$			(1.036	± 0.006) × 10 ⁻⁸	
۲ ₆	$e^+ \nu_e e^+ e^-$			(3.2	± 0.5) × 10 ⁻⁹	
۲ ₇	$e^+ \nu_e \nu \overline{\nu}$			< 5		imes 10 ⁻⁶	90%
Lepton Family number (LF) or Lepton number (L) violating modes							
Г ₈	$\mu^+ \overline{\nu}_e$	L	[c]	< 1.5		imes 10 ⁻³	90%
	$\mu^+ \nu_e$	LF	[c]	< 8.0		imes 10 ⁻³	90%
Γ ₁₀	$\mu^- e^+ e^+ \nu$	LF		< 1.6		imes 10 ⁻⁶	90%

HTTP://PDG.LBL.GOV

Partitional Clustering

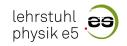
- Optimization of a certain criterion
- k-means
 - 1) Start with k cluster centers
 - 2) Iteration of

Expectation-step:

Calculation of all distances between data

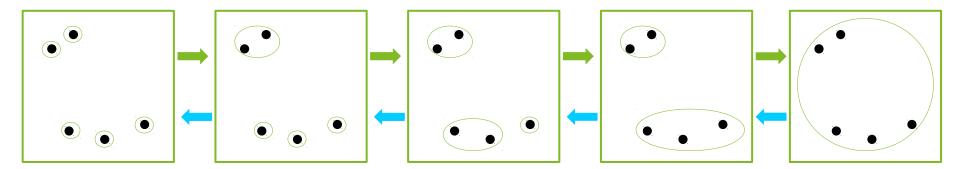
points and cluster centers

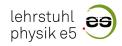

Association of the data with the nearest

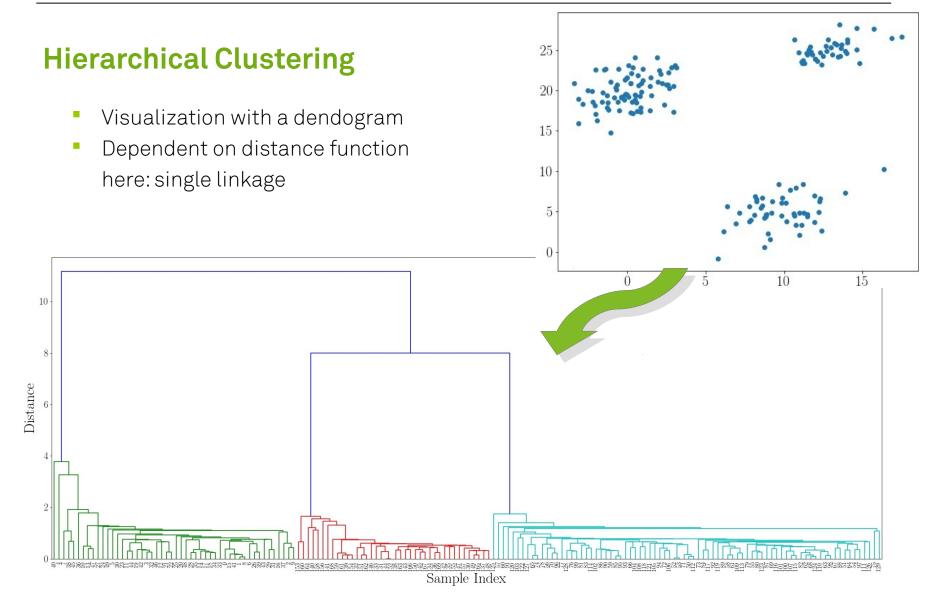

cluster center

Maximization-step:

Calculate new cluster centers as average of the data points of each cluster







Hierarchical Clustering

- Creation of a cluster hierarchy
- Strategies: agglomerative type and divisive type

