Magnetic Calorimeters for Neutrino Physics

MI

E

MII

Loredana Gastaldo

NI

NII

Kirchhoff Institute for Physics, Heidelberg University

Contents

NI

NII

- Metallic Magnetic Calorimeters
- Direct neutrino mass determination The ECHo neutrino mass experiment
- Sterile neutrinos searches in electron capture spectra

MI

E

MI

- $0\nu 2\beta$ with scintillating crystals
- Conclusions and outlook

Take-home messages

NI

NII

- Working principle of MMCs and their performance
- Where a finite electron neutrino mass affects the ¹⁶³Ho EC spectrum Experimental methods (advantages and disadvantages)

MII

- How to search for sterile neutrino signature in EC spectra
- Benefits of scintillating crystals and detector requirements for DBD experiments

Low temperature micro-calorimeters

Low temperature micro-calorimeters

$$\Delta T \cong \frac{E}{C_{\rm tot}}$$

E = 10 keV

$$C_{tot} = 4.18 \text{ J/K}$$
 $\rightarrow ~ 3.8 \ 10^{-16} \text{ K}$

Low temperature micro-calorimeters

$$\Delta T \cong \frac{E}{C_{\text{tot}}}$$

$$E = 10 \text{ keV}$$

$$C_{\text{tot}} = 1 \text{ pJ/K}$$

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensor

Temperature sensors

Resistance at superconducting transition, TES

Magnetization of paramagnetic material, MMC

Metallic Magnetic Calorimeters - MMC

main differences to calorimeters with resistive thermometers

no dissipation in the sensor

no galvanic contact to the sensor

MMC: signal size

Numerical calculations based on mean field approximation are used to describe thermodynamical properties of interacting spins (RKKY)

MMCs: Readout

Two-stage SQUID setup with flux locked loop allows for:

- Iow noise
- large bandwidth / slewrate
- small power dissipation on detector SQUID chip (voltage bias)

MMCs: Planar Geometries

- Planar temperature sensor
- B-field generated by persistent current
- transformer coupled to SQUID

• 1×8 x-ray absorbers

- 250 μ m×250 μ m gold, 5 μ m thick
- 98% Qu.-Eff. @ 6 keV
- electroplated into photoresist mold (RRR>15)
- mech/therm contact to sensor by stems to prevent loss of initially hot phonons

• Au:¹⁶⁸Er_{300ppm} temperature sensors

• co-sputtered from pure Au and high conc. AuEr target

• Meander shaped pickup coils

- \bullet 2.5 μm wide Nb lines
- *I*_c ≈ 100mA

• On-chip persistent current switch (AuPd)

MMCs: Microfabrication

- decay time here: 3 ms @ 30 mK
- nearly single exponential decay

adjusted by sputtered thermal link (Au)

- non-linearity: 1% at 6 keV
- well described by quadratic term

- non-linearity: 6% at 60 keV
- well described by quadratic term

maXs20: 1d-array for soft x-rays (T=20 mK)

• Very good energy resolution

 ΔE_{FWHM} = 1.6 eV @ 6 keV

maXs20: 1d-array for soft x-rays (T=20 mK)

MMCs: Microwave SQUID multiplexing

Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters S.Kempf et al., J. Low. Temp. Phys. **175** (2014) 850-860

MMCs: Microwave SQUID multiplexing

Massive neutrinos

Neutrino mass determination

Cosmology

Neutrinoless Double beta decay

- $M_{\nu} = \sum m_i$
- Model dependent
- Need of satellites
- Present limit 0.12 1 eV
- Next future 15-50 meV

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_i \right|$$

- Model dependent
- Laboratory experiments
- Present limit 0.1 0.4 eV
- Next future 15-50 meV

Kinematics of β -decay and electron capture

$$m^2(v_e) = \sum_i \left| U_{ei} \right|^2 m^2_i$$

- Model independent
- Laboratory experiments

10m

23

• Present limit 2 eV

250 um

• Next future 200 meV

Direct neutrino mass determination

(1)

Kinematics of beta decay

$$m^{2}(v_{e}) = \sum_{i} |U_{ei}|^{2} m_{i}^{2}$$

- Model independent
- Laboratory experiments

$$m(\overline{v_e}) < 2 eV$$
 ³H

(1) Ch. Kraus *et al.,* Eur. Phys. J. C **40** (2005) 447 N. Aseev *et al.,* Phys. Rev D **84** (2011) 112003

Direct neutrino mass determination

Kinematics of beta decay

$$m^{2}(v_{e}) = \sum_{i} |U_{ei}|^{2} m_{i}^{2}$$

- Model independent
- Laboratory experiments

$$m(\overline{v}_e) < 2 \ eV$$
 ³H (1)
 $m(v_e) < 225 \ eV$ ¹⁶³Ho (2)

ev

(1) Ch. Kraus et al., Eur. Phys. J. C 40 (2005) 447 N. Aseev et al., Phys. Rev D 84 (2011) 112003

(2) P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Direct neutrino mass determination

Kinematics of beta decay

$$m^{2}(v_{e}) = \sum_{i} |U_{ei}|^{2} m_{i}^{2}$$

- Model independent
- Laboratory experiments

Next future 200 meV

$$m(\overline{\nu}_e) < 2 \ eV$$
 ³H (1)

 $m(v_e) < 225 \ eV$ ¹⁶³Ho (2)

(1) Ch. Kraus *et al.,* Eur. Phys. J. C **40** (2005) 447 N. Aseev *et al.,* Phys. Rev D **84** (2011) 112003

(2) P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 $(1987)^2$ 679

Beta decay and electron capture

• $\tau_{1/2} \cong 12.3$ years (4*10⁸ atoms for 1 Bq)

• Q_β = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

• $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm FC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Beta decay and electron capture

• $\tau^{}_{1/2}\,\cong$ 12.3 years $\,$ (4*10^8 atoms for 1 Bq) $\,$

• Q_β = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

- $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Beta decay of ³H

Beta decay of ³H

Only a small fraction of events in the last eV below the endpoint: 2 *10⁻¹³

Very low background is required

The KATRIN experiment

Main ideas:

- high activity source 10¹¹ e⁻/s
 - high resolution MAC-E* filter to select electrons close to the end point
 - count electrons as function of retarding potential
 - \rightarrow integral spectrum

*MAC-E: Magnetic Adiabatic Collimation with Electrostatic Filter

The KATRIN experiment

J. Angrik et al., (KATRIN Collaboration) 2004 Wissenschaftliche Berichte FZ Karlsruhé 7090

The KATRIN experiment: present status

The KATRIN experiment: present status

Photo K. Valerius

³H based experiments

KATRIN - Karlsruhe Tritium Neutrino Experiment

Main ideas:

- high activity source: 10¹¹ e⁻/s
 - high resolution MAC-E filter to select electrons close to the end point
 - count electrons as function of retarding potential
 - \rightarrow integral spectrum

Project8

Main ideas:

- Source = detector: $10^{11} 10^{13} {}^{3}\text{H}_{2}$ molecules /cm³
- Use cyclotron frequency to extract electron energy
- Differential spectrum

PTOLEMY - Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield

Main ideas:

- large area tritium source: 100 g atomic ³H
 - MAC-E lter to select electrons close to the end point
 - RF tracking and time-of-flight systems
 - cryogenic calorimetry \rightarrow differential spectrum

Beta decay and electron capture

• $\tau_{1/2} \cong 12.3$ years (4*10⁸ atoms for 1 Bq)

• Q_{FC} = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

• $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm FC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501
Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

• $\tau_{1/2} \cong$ 4570 years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Atomic de-excitation:

- X-ray emission
- Auger electrons

 V_e

Source

• Coster-Kronig transitions

Detector V_e P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Volume 118B, number 4, 5, 6

PHYSICS LETTERS

9 December 1982

CALORIMETRIC MEASUREMENTS OF ¹⁶³HOLMIUM DECAY AS TOOLS TO DETERMINE THE ELECTRON NEUTRINO MASS

A. DE RÚJULA and M. LUSIGNOLI¹ CERN, Geneva, Switzerland

(a) F. Gatti et al., Physics Letters B 398 (1997) 415-419

(b) E. Laesgaard et al., Proceeding of 7th International Conference on Atomic Masses and Fundamental Constants (AMCO-7), (1984).

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

F. Gatti et al., Physics Letters B 398 (1997) 415-419

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

F. Gatti et al., Physics Letters B 398 (1997) 415-419

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

Description of the ¹⁶³Ho EC spectrum

- (2) B. Alpert et al, Eur. Phys. J. C (2015) 75:112
- (3) M. Croce et al., arXiv:1510.03874

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

 Fraction of events at endpoint regions
 ➢ In the interval 2.832 -2.833 keV only 6×10⁻¹³

0

Statistics in the end point region

- $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$
- Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)
- *f*_{pu} < 10⁻⁵
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels \rightarrow multiplexing
- Precision characterization of the endpoint region
- $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- *f*_{pu} < 10⁻⁵
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels \rightarrow multiplexing

Precision characterization of the endpoint region

• ∆*E*_{FWHM} < 3 eV

Background level

• < 10⁻⁶ events/eV/det/day

First detector prototype for ¹⁶³Ho

- Absorber for calorimetric measurement

 → ion implantation @ ISOLDE-CERN in 2009
 on-line process
- About 0.01 Bq per pixel

Field and heater bondpads

Heatsink

SQUIDbondpads

• Operated over more than 4 years

0

L. Gastaldo et al., Nucl. Inst. Meth. A, 711 (2013) 150 P. C.-O. Ranitzsch et al., http://arxiv.org/abs/1409.0071v1 Meander

Calorimetric spectrum

- Rise Time ~ 130 ns
- $\Delta E_{\text{FWHM}} = 7.6 \text{ eV} @ 6 \text{ keV} (2013)$
- Non-Linearity < 1% @ 6keV

First calorimetric measurement

	E _H bind.	E _H exp.	$arGamma_{ m H}$ lit.	$\Gamma_{\rm H}$ ехр
MI	2.047	2.040	13.2	13.7
MII	1.845	1.836	6.0	7.2
NI	0.420	0.411	5.4	5.3
NII	0.340	0.333	5.3	8.0
ΟΙ	0.050	0.048	5.0	4.3

P. C.-O. Ranitzsch et al., accepted for publication in PRL (2017)

$Q_{\rm EC}$ determination

P. C.-O. Ranitzsch et al ., accepted for publication in PRL (2017)

$Q_{\rm EC}$ determination

P. C.-O. Ranitzsch et al., accepted for publication in PRL (2017)

Scaling up

¹⁶³Ho high purity source

Required activity in the detectors: Final experiment $\rightarrow >10^{6} \text{ Bq} \rightarrow >10^{17} \text{ atoms}$

Neutron irradiation
 (n,γ)-reaction on ¹⁶²Er

High cross-section

Radioactive contaminants

Er161	Er162	Er163	Er164	Er165	Er166
3/2-	0+	5/2	0+	5/2-	0+
EC	0.14	EC	1.61	EC	33.6
Ho160	Ho161	Ho162	Ho163	Ho164	Ho165
25.0 m 5+	2.48 n 7/2-	15.0 m 1+	2-	29 m 1+	* -
EC	EC	EC	EC	EC,β-	1 10
Dy159	Dy160	Dy161	Dy162	Dy16.	Dy 164
3/2-	0+	5/2	0.	519	
		5//41	UT	3/2-	V +
EC	2.34	18.9	25.5	24.9	28.2
EC Tb158 180 y	2.34 Tb159	18.9 Tb160 72.3 d	25.5 Tb161 6.88 d	24.9 Tb162 7.60 m	28.2 Tb163 19.5 m
EC Tb158 180 y 3-	2.34 Tb159 3/2+	18.9 Tb160 72.3 d 3-	25.5 Tb161 6.88 d 3/2+	24.9 Tb162 7.60 m 1-	28.2 Tb163 19.5 m 3/2+

Charged particle activation

^{nat}Dy(p,xn) ¹⁶³Ho

^{nat}Dy(α, xn) ¹⁶³Er (ε) ¹⁶³Ho ¹⁵⁹Tb(⁷Li, 3n) ¹⁶³Er (ε) ¹⁶³Ho

Small cross-section

Few radioactive contaminants

¹⁶³Ho high purity source

Required activity in the detectors: Final experiment $\rightarrow > 10^6 \text{ Bq} \rightarrow > 10^{17} \text{ atoms}$

• •

Neutron irradiation
 (n,γ)-reaction on ¹⁶²Er

High cross-section

Radioactive contaminants

Er161	Er162	Er163	Er164	Er165	Er166
3/2-	0+	5/2	0+	5/2-	0+
EC	0.14	EC	1.61	EC	33.6
Ho160	Ho161	Ho162	Ho163	Ho164	Ho165
25.0 m 5+	2.48 h 7/2-	15.0 m 1+	2- 2-	29 m 1+	* -
EC	EC	EC	EC	EC,β-	1 00
Dv159	Dy160	Dy161	Dy162	Dy16.	Dy 164
3/2-	0+	5/2+	0+	5/2-	6 ++
EC	2.34	18.9	25.5	24.9	28.2
Tb158	Tb159	Tb160	Tb161	Tb162	Tb163
3-	3/2+	3-	3/2+	1-	3/2+
EC,β ⁻	100	β-	β-	β-	β-

Charged particle activation

^{nat}Dy(p,xn) ¹⁶³Ho

^{nat}Dy(α, xn) ¹⁶³Er (ε) ¹⁶³Ho ¹⁵⁹Tb(⁷Li, 3n) ¹⁶³Er (ε) ¹⁶³Ho

Small cross-section

Few radioactive contaminants

NuMECS

59

Mass separation and ¹⁶³Ho ion-implantation

Fabrication 4π absorber

Stems between absorber and sensor prevent athermal phonon loss to the substrate

Definition of the implantation area by microstructuring a photoresist layer

ECHo-1k array

3" wafer with 64 ECHo-1k chip

Suitable for parallel and multiplexed readout

64 pixels which can be loaded with ¹⁶³Ho + 4 detectors for diagnostics

Design performance:

 $\Delta E_{FWHM} \simeq 5 \text{ eV}$ $\tau_r \simeq 90 \text{ ns}$ (single channel readout) $\tau_r \simeq 300 \text{ ns}$ (multiplexed read-out)

S.Kempf et al., J. Low. Temp. Phys. 176 (2014) 426

ECHo-1k array

S.Kempf et al., J. Low. Temp. Phys. 176 (2014) 426

Characterisation of spectral shape

Two-holes excited states:

shake-up shake-off

- A. Faessler et al.
 - J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C 91, 035504 (2015)
- A. Faessler and F. Simkovic
 Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C **91**, 064302 (2015)
- A. De Rujula and M. Lusignoli
 JHEP 05 (2016) 015, arXiv:1601.04990v1

A. Faessler et al.
 Phys. Rev. C 95, (2017) 045502

ECHo-1k (2015 - 2018)

¹⁶³Ho activity: $A_t = 1 \text{ kBq}$

Detectors: Metallic Magnetic Calorimeters

- → Energy resolution $\Delta E_{\text{FWHM}} \leq 5 \text{ eV}$
- \rightarrow Time resolution $\tau \leq 1 \, \mu s$

Unresolved pile-up fraction	$f_{ m pu}$ \leq 10 ⁻⁵
\rightarrow activity per pixel:	A = 10 Bq
\rightarrow number of detectors	<i>N</i> = 100

Read-out : Microwave SQUID Multiplexing

 \rightarrow 2 arrays with ~50 single pixels

Background **b** < 10⁻⁵ /eV/det/day

Measuring time **t** = 1 year

 $m(v_{\rm e}) < 10 \text{ eV} 90\% \text{ C.L.}$

ECHo cryogenic platform

- Large space at MXC enough for several ECHo phases
- cooling power: 15µW @ 20 mK
 - Possibility to load 200kg for passive shielding

ECHo cryogenic platform

- Large space at MXC enough for several ECHo phases
- cooling power: $15\mu W @ 20 mK$
- Possibility to load 200kg for passive shielding
- Presently equipped with:

2 RF lines for microwave multiplexing readour of 2 MMC arrays

12 ribbons each with 30 Cu98Ni2 0.2 mm,
1.56 Ohm/m, cables from RT to mK
→ allows for parallel readout of 36 two-stage SQUID set-up

ECHo-1M (next future)

¹⁶³Ho activity: $A_t = 1 \text{ MBq}$

Detectors: Metallic Magnetic Calorimeters

- → Energy resolution $\Delta E_{FWHM} \leq 3 \text{ eV}$ → Time resolution $\tau \leq 0.1 \, \mu s$
- Unresolved pile-up fraction $f_{pu} \le 10^{-6}$ \rightarrow activity per pixel: A = 10 Bq \rightarrow number of detectors $N = 10^5$

Read-out : Microwave SQUID Multiplexing

 \rightarrow 100 arrays with ~1000 single pixels

Background **b** < 10⁻⁶ /eV/det/day

Measuring time t = 1 - 3 year

 $m(v_{\rm e}) < 1 \; {\rm eV} \; 90\% \; {\rm C.L.}$

How does the existence of sterile neutrino affect the EC spectrum?

Sterile Neutrino and ¹⁶³Ho

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \sqrt{1 - \frac{{m_{\nu}}^2}{(Q_{\rm EC} - E_{\rm C})^2}} \sum_{\rm H} B_{\rm H} \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{{\Gamma_{\rm H}}^2}{4}}$$

Sterile Neutrino and ¹⁶³Ho

$$\frac{dW}{dE_{\rm C}} = \mathcal{A}(Q_{\rm EC} - E_{\rm C})^2 \sum_{i} |U_{ei}|^2 \sqrt{1 - \frac{m_i^2}{(Q_{\rm EC} - E_{\rm C})^2}} \sum_{\rm H} B_{\rm H} \varphi_{\rm H}^{\ 2}(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^{\ 2}}{4}}$$

 Electron neutrino as superposition of mass eigenstates

Sterile Neutrino and ¹⁶³Ho

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \left[\left(1 - |U_{e4}|^2\right) + |U_{e4}|^2 \sqrt{1 - \frac{m_4^2}{(Q_{\rm EC} - E_{\rm C})^2}} H(Q_{\rm EC} - E_{\rm c} - m_4) \right] \sum_{\rm H} B_H \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}} + \frac{\Gamma_{\rm H}^2}{4} + \frac{\Gamma_{\rm H}^$$

 Electron neutrino as superposition of mass eigenstates

•
$$m_{i=1,2,3} << m_4 \longrightarrow m_{i=1,2,3} \sim 0 \text{ eV}$$
Sterile Neutrino and ¹⁶³Ho

$$\frac{dW}{dE_{\rm C}} = \mathcal{A}(Q_{\rm EC} - E_{\rm C})^2 \left[\left(1 - \left| U_{e4} \right|^2 \right) + \left| U_{e4} \right|^2 \sqrt{1 - \frac{m_4^2}{(Q_{\rm EC} - E_{\rm C})^2}} H(Q_{\rm EC} - E_{\rm c} - m_4) \right] \sum_{\rm H} B_H \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}}$$

L. Gastaldo, C. Giunti, E. Zavanin., *High Energ. Phys.* **06** (2016) 61.

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \left[\left(1 - |U_{e4}|^2\right) + |U_{e4}|^2 \sqrt{1 - \frac{m_4^2}{(Q_{\rm EC} - E_{\rm C})^2}} H(Q_{\rm EC} - E_{\rm c} - m_4) \right] \sum_{\rm H} B_H \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}} + \frac{\Gamma_{\rm H}^2}{4} + \frac{\Gamma_{\rm H}^$$

m₄=2 keV, U_{e4}²=0.5

no sterile neutrino

Sensitivity to the mixing matrix element at 90% CL as a function of the sterile neutrino mass achievable with about 10¹⁰ events in the full EC spectrum.

P. Filianin et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 095004

 \succ postion of kink => m₄

$$\blacktriangleright$$
 depth of kink => $|U_{e4}|^2$

- Statistical Fluctuation
- No Pile Up
- Theoretical Spectrum supposed to be perfectly known

A White Paper on keV Sterile Neutrino Dark Matter arXiv:1602.04816v1 ⁷⁹

Other condidates in the EC branch:

- Q_{EC} < 100 keV
- Reasonable halflife

Nuclide	$T_{1/2}$	EC- transition	Q (keV) [22]	$\begin{array}{c} B_i (\mathrm{keV}) \\ [23] \end{array}$	$\begin{array}{c} B_j (\mathrm{keV}) \\ [23] \end{array}$	$ \psi_i ^2/ \psi_j ^2$	$\begin{array}{c} Q - B_i \\ (\text{keV}) \end{array}$
¹²³ Te	$>2 \cdot 10^{15} \mathrm{y}$?	52.7(16)	K: 30.4912(3)	L _I : 4.9392(3)	7.833	22.2
¹⁵⁷ Tb	71 y	$3/2^+ \rightarrow 3/2^-$	60.04(30)	K: 50.2391(5)	L _I : 8.3756(5)	7.124	9.76
¹⁶³ Ho	4570 y	$7/2^{-} \rightarrow 5/2^{-}$	2.555(16)	M _I : 2.0468(5)	N _I : 0.4163(5)	4.151	0.51
¹⁷⁹ Ta	1.82 y	$7/2^+ \rightarrow 9/2^+$	105.6(4)	K: 65.3508(6)	L _I : 11.2707(4)	6.711	40.2
¹⁹³ Pt	50 y	$1/2^{-} \rightarrow 3/2^{+}$	56.63(30)	L _I : 13.4185(3)	M _I : 3.1737(17)	4.077	43.2
²⁰² Pb	52 ky	$0^+ \rightarrow 2^-$	46(14)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	30.7
²⁰⁵ Pb	13 My	$5/2^{-} \rightarrow 1/2^{+}$	50.6(5)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	35.3
²³⁵ Np	396 d	$5/2^+ \rightarrow 7/2^-$	124.2(9)	K: 115.6061(16)	L _I : 21.7574(3)	5.587	8.6

Other condidates in the EC branch:

- Q_{EC} < 100 keV
- Reasonable halflife

Nuclide	$T_{1/2}$	EC- transition	Q (keV) [22]	$\begin{array}{c} B_i (\mathrm{keV}) \\ [23] \end{array}$	<i>B_j</i> (keV) [23]	$ \psi_i ^2/ \psi_j ^2$	$\begin{array}{c} Q - B_i \\ (\text{keV}) \end{array}$
¹²³ Te	$>2 \cdot 10^{15} \mathrm{y}$?	52.7(16)	K: 30.4912(3)	L _I : 4.9392(3)	7.833	22.2
¹⁵⁷ Tb	71 y	$3/2^+ \rightarrow 3/2^-$	60.04(30)	K: 50.2391(5)	L _I : 8.3756(5)	7.124	9.76
¹⁶³ Ho	4570 y	$7/2^{-} \rightarrow 5/2^{-}$	2.555(16)	M _I : 2.0468(5)	N _I : 0.4163(5)	4.151	0.51
¹⁷⁹ Ta	1.82 y	$7/2^+ \rightarrow 9/2^+$	105.6(4)	K: 65.3508(6)	L _I : 11.2707(4)	6.711	40.2
¹⁹³ Pt	50 y	$1/2^{-} \rightarrow 3/2^{+}$	56.63(30)	L _I : 13.4185(3)	M _I : 3.1737(17)	4.077	43.2
²⁰² Pb	52 ky	$0^+ \rightarrow 2^-$	46(14)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	30.7
²⁰⁵ Pb	13 My	$5/2^{-} \rightarrow 1/2^{+}$	50.6(5)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	35.3
²³⁵ Np	396 d	$5/2^+ \rightarrow 7/2^-$	124.2(9)	K: 115.6061(16)	L _I : 21.7574(3)	5.587	8.6

Other condidates in the EC branch:

- Q_{EC} < 100 keV
- Reasonable halflife

Nuclide	$T_{1/2}$	EC- transition	Q (keV) [22]	$\begin{array}{c} B_i (\mathrm{keV}) \\ [23] \end{array}$	<i>B_j</i> (keV) [23]	$ \psi_i ^2/ \psi_j ^2$	$Q-B_i$ (keV)
¹²³ Te	$>2 \cdot 10^{15} \mathrm{y}$?	52.7(16)	K: 30.4912(3)	L _I : 4.9392(3)	7.833	22.2
¹⁵⁷ Tb	71 y	$3/2^+ \rightarrow 3/2^-$	60.04(30)	K: 50.2391(5)	L _I : 8.3756(5)	7.124	9.76
¹⁶³ Ho	4570 y	$7/2^{-} \rightarrow 5/2^{-}$	2.555(16)	M _I : 2.0468(5)	N _I : 0.4163(5)	4.151	0.51
¹⁷⁹ Ta	1.82 y	$7/2^+ \rightarrow 9/2^+$	105.6(4)	K: 65.3508(6)	L _I : 11.2707(4)	6.711	40.2
¹⁹³ Pt	50 y	$1/2^{-} \rightarrow 3/2^{+}$	56.63(30)	L _I : 13.4185(3)	M _I : 3.1737(17)	4.077	43.2
²⁰² Pb	52 ky	$0^+ \rightarrow 2^-$	46(14)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	30.7
²⁰⁵ Pb	13 My	$5/2^{-} \rightarrow 1/2^{+}$	50.6(5)	L _I : 15.3467(4)	M _I : 3.7041(4)	4.036	35.3
²³⁵ Np	396 d	$5/2^+ \rightarrow 7/2^-$	124.2(9)	K: 115.6061(16)	L _I : 21.7574(3)	5.587	8.6

P. Filianin et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 095004

Neutrinoless double beta decay

Neutrinoless double beta decay

If conservation rules don't allow simple beta decay:

Neutrinoless double beta decay

If conservation rules don't allow simple beta decay:

Neutrinoless double beta decay - v mass

Neutrinoless double beta decay - v mass

Uncertanties to evaluate the effective Majorana mass due to:

Nuclear matrix element

QRPA-Tu: F. Simkovic *et al.*, **Phys. Rev. C 87, 045501 (2013)** pnQRPA: J. Hyvarinen *et al.*, **Phys. Rev. C 91, 024613 (2015)** IBM-2: J. Barea *et al.*, **Phys. Rev. C 91, 034304 (2015)** ISM: J. Menendez *et al.*, **Nucl. Phys. A 818, 139 (2009)**

Present status

Neutrinoless double beta decay - sensitivity

Typically an excess of events is not found...

A limit on the halflife for 0v2e decay can be defined as function of:

Two limits defined by the background index

> 1 background events in ROI

$$(\tau_{1/2}^{\exp})^{-1} = (\ln 2)N_a \frac{a}{A}\varepsilon \sqrt{\frac{MT}{b\Delta E}}$$

<1 background events in ROI $(\tau_{1/2}^{\exp})^{-1} = (\ln 2)N_a \frac{a}{A}\varepsilon \frac{MT}{n_{CL}}$

Is there a prefered nuclide?

$$(\tau_{1/2}^{\exp})^{-1} = (\ln 2) N_a \frac{a}{A} \varepsilon \sqrt{\frac{MT}{b\Delta E}}$$

$\operatorname{transition}$	$G^{01}(E_0, Z)$	$Q_{\beta\beta}$	Abund.
	$ imes 10^{14} y$	[MeV]	(%)
$^{150}Nd \rightarrow {}^{150}Sm$	26.9	3.667	6
${}^{48}Ca \rightarrow {}^{48}Ti$	8.04	4.271	0.2
${}^{96}Zr \rightarrow {}^{96}Mo$	7.37	3.350	3
$^{116}Cd \rightarrow {}^{116}Sn$	6.24	2.802	7
$^{136}Xe \rightarrow {}^{136}Ba$	5.92	2.479	9
$^{100}Mo \rightarrow {}^{100}Ru$	5.74	3.034	10
$^{130}Te \rightarrow {}^{130}Xe$	5.55	2.533	34
$^{82}Se \rightarrow {}^{82}Kr$	3.53	2.995	9
$^{76}Ge \rightarrow {}^{76}Se$	0.79	2.040	8

Is there a prefered nuclide?

Is there a prefered nuclide?

transition	$G^{01}(E_0, Z)$	$Q_{\beta\beta}$	Abund.
	$ imes 10^{14} y$	[MeV]	(%)
$^{150}Nd \rightarrow ^{150}Sm$	26.9	3.667	6
${}^{48}Ca \rightarrow {}^{48}Ti$	8.04	4.271	0.2
${}^{96}Zr \rightarrow {}^{96}Mo$	7.37	3.350	3
$^{116}Cd \rightarrow ^{116}Sn$	6.24	2.802	7
$^{136}Xe \rightarrow {}^{136}Ba$	5.92	2.479	9
$^{100}Mo \rightarrow {}^{100}Ru$	5.74	3.034	10
$^{130}Te \rightarrow {}^{130}Xe$	5.55	2.533	34
$^{82}Se \rightarrow {}^{82}Kr$	3.53	2.995	9
$^{76}Ge \rightarrow {}^{76}Se$	0.79	2.040	8

Detector Properties:

- Efficiency
- Energy resolution

Is there a prefered nuclide?

Is there a prefered nuclide?

Many different experiments

Experiment	Isotope	Technique	Mass ββ(0v) isotope		
CUORICINO	130Te	TeO2 Bolometer	10 kg		
NEMO3	100Mo/82Se	Foils with tracking	6.9/0.9 kg		
GERDA I	76Ge	Ge diodes in LAr	15 kg		
EXO200	136Xe	Xe liquid TPC	160 kg		
KamLAND-ZEN	136Xe	2.7% in liquid scint.	380 kg		Post results
CUORE-0	130Te	TeO2 Bolometer	11 kg		Destresuits
GERDA II	76Ge	Point contact Ge in LAr	30+35 kg		
Majorana D	76Ge	Point contact Ge	30 kg		
CUORE	130Te	TeO2 Bolometer	206 kg		
SNO+	130Te	0.3% natTe suspended in Scint	55 kg		
NEXT-100	136Xe	High pressure Xe TPC	80 kg		
SuperNEMO D	82Se	Foils with tracking	7 kg		
CANDLES	48Ca	305 kg of CaF2 crystals - liq. scint	0.3 kg		
LUCIFER	82Se	ZnSe scint. bolometer	18 kg		
1TGe (GERDA+MJ)	76Ge	Best technology from GERDA and MAJORANA	~ tonne		Durantaina
CUPID	-	Hybrid Bolometers	~ tonne		Promising
nEXO	136Xe	Xe liquid TPC	~ tonne		technique
SuperNEMO	82Se	Foils with tracking	100 kg	Ì	-
AMoRE	100Mo	CaMoO4 scint. bolometer	50 kg		
MOON	100Mo	Mo sheets	200 kg		
COBRA	116Cd	CdZnTe detectors	10 kg/183 kg	-	
CARVEL	48Ca	48CaWO4 crystal scint.	~ tonne	-	
DCBA	150Nd	Nd foils & tracking chambers	20 kg	-	

Background due to α particle can be removed

Temperature signal: $\Delta T \cong \frac{\Delta E_{phonon}}{C}$ Light signal is also detected as $\Delta T \cong \frac{\Delta E_{photon}}{C}$ of a suitable photon detector

Low T thermal detectors are the best candidate for these measurements

¹⁰⁰Mo-based experiments

$${}^{100}Mo \rightarrow {}^{100}Ru + 2e^{-} + (2v_e) \quad T_{1/2} = [7.15 \pm 0.37 \text{ (stat)} \pm 0.66 \text{ (syst)}] \times 10^{18} \text{ y}$$

$$Q_{\beta\beta} = 3034 \text{ keV}$$

$${}^{\text{L. Cardani et al., J. Phys. G: Nucl. Part. Phys.}_{41 \text{ (2014) 075204}}$$

LUCIFER

LUMINEU

AMORE

Different scintillating crystals coupled to NTD_Ge

LUCIFER, http://arxiv.org/abs/1303.4080 JINST 8 (2013) P05021

ZnMoO₄, LiMoO₄

NTD-Ge baseline for photon and phonon channel **MMC** R&D for photon channel

LUMINEU arXiv:1704.01758 Submitted to EPJC

CaMoO₄

 SB28 weight 196 g weight 390 g

 S35 weight ~300 g

SB29

MMC for photon and phonon channel

> **Technical Design Report for the** AMoRE 0v88 Decay Search Experiment arXiv:1512.05957 [physics.ins-det]

¹⁰⁰Mo-based experiments

NTD-Ge baseline for photon and phonon channel MMC R&D for photon channel

LUCIFER, <u>http://arxiv.org/abs/1303.4080</u> JINST 8 (2013) P05021 LUMINEU arXiv:1704.01758 Submitted to EPJC MMC for photon and phonon channel

Technical Design Report for the AMoRE 0v66 Decay Search Experiment <u>arXiv:1512.05957</u> [physics.ins-det]

Approach used in AMoRe

Technical Design Report for the AMoRE 0v86 Decay Search Experiment arXiv:1512.05957 [physics.ins-det]

Photo so	ensor
	40 Ca 100 MoO $_4$
	Phonon(Heat) sensor

Approach used in AMoRe

Technical Design Report for the AMoRE 0v66 Decay Search Experiment arXiv:1512.05957 [physics.ins-det]

B/Y

Cosmic muons

1401.1

(a)

7.5

545 eV @ 6 keV

Combined Photon and Phonon Detector: P2

Combined photon and phonon detector: P2

Integrated light and heat detectors P2

Integrated light and heat detectors P2

Experimental set-up for P2

Experimental set-up for P2

Photon detector: First tests with 6keV x-rays

D. Gray et al., JLTP 184 3-4 (2016) 904

Conclusions and outlook

- Metallic magnetic calorimeters are reliable and versatile detectors
 - high resolution for all kinds of particles
 - wide range of energies
 - Fast signal rise time

- Direct determination of the electron neutrino mass using ¹⁶³Ho MMC have proved to fulfil requirements
- eV-scale and keV-scale sterile neutrinos can be investigated through calorimetric measurement of EC spectra
- MMC-based photon and phonon detectors could bring significant benefit for large mass ¹⁰⁰Mo-based DBD experiments

Take-home messages

NI

NII

- Working principle of MMCs and their performance
- Where a finite electron neutrino mass affects the ¹⁶³Ho EC spectrum Experimental methods (advantages and disadvantages)

MII

- How to search for sterile neutrino signature in EC spectra
- Benefits of scintillating crystals and detector requirements for DBD experiments

MMCs: Microwave SQUID multiplexing

measurement of the spectrum of ⁵⁵Fe to determine the energy resolution

Electron capture in ¹⁶³Ho: Q_{EC} determination

- Calorimetric measurements
- Measurements of x-rays

★
$$Q_{\rm EC} = m(^{163}{\rm Ho}) - m(^{163}{\rm Dy})$$

- $\tau_{1/2} \cong$ 4570 years (2*10¹¹ atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Electron capture in ¹⁶³Ho: Q_{EC} determination

- Calorimetric measurements
- Measurements of x-rays

★
$$Q_{\rm EC} = m(^{163}{\rm Ho}) - m(^{163}{\rm Dy})$$

Penning Trap Mass Spectroscopy @TRIGA TRAP (Uni-Mainz) (*) @SHIPTRAP (GSI – Darmstadt) (**)

$$v_c = \frac{qB}{m}$$

•
$$\tau_{1/2} \cong$$
 4570 years (2*10¹¹ atoms for 1 Bq)

- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV
 - S. Eliseev et al., *Phys. Rev. Lett.* **115** (2015) 062501 (**) F. Schneider et al., Eur. Phys. J. A **51** (2015) 89 (*)

High purity ¹⁶³Ho source in ECHo

Requirement : >10⁶ Bq \rightarrow >10¹⁷ atoms

- (n, γ)-reaction on ¹⁶²Er
 - High cross-section
 - Radioactive contaminants

- Excellent chemical separation
 Only ^{166m}Ho
- Available ¹⁶³Ho source:

~ 10¹⁸ atoms

High purity ¹⁶³Ho source in ECHo

Requirement : >10⁶ Bq \rightarrow >10¹⁷ atoms

- (n, γ)-reaction on ¹⁶²Er
 - High cross-section
 - Radioactive contaminants

- Excellent chemical separation
 Only ^{166m}Ho
- Available ¹⁶³Ho source:

~ 10¹⁸ atoms

Mass separation and ¹⁶³Ho ion-implantation

RISIKO @ Physics Institute, Mainz University

- Resonant laser ion source efficiency 42%
- Suppression of neighboring masses > 700

→ ^{166m}Ho/¹⁶³Ho < 10⁻⁵

- Optimization of beam focalization

MMCs: Microwave SQUID multiplexing

MMCs: Microwave SQUID multiplexing

simultaneous acquisition of signals from two indepedent detectors using a μ MUX

163Ho off-line implantation: results

Activity per pixel

- Energy resolution
- $\Delta E_{\rm FWHM} \simeq 10 \, {\rm eV}$
- No strong evidence of radioactive contamination in the source
- Symmetric detector response

124 C. Hassel et al., JLTP (2015)

Where to improve

Two-holes excited states: sl

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al.
 Phys. Rev. C 95, (2017) 045502

Two-holes excited states:

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al.
 Phys. Rev. C 95, (2017) 045502

Two-holes excited states:

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al.
 Phys. Rev. C 95, (2017) 045502

A. Faessler et al.
 J. Phys. G 42 (2015) 015108

- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C **91**, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al.
 Phys. Rev. C 95, (2017) 045502

High statistics and high energy resolution spectra will provide information on the spectral shape

High statistics and high energy resolution spectra will provide information on the spectral shape

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C **91**, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al.
 Phys. Rev. C 95 (2017) 045502

Neutrinoless double beta decay - v mass

Uncertanties to evaluate the effective Majorana mass due to:

- Nuclear matrix element
- Quenching of the axial vector coupling constant gA

Neutrinoless double beta decay - v mass

Phase space term

$$m_{\beta\beta}^2 = \left| \sum U_{ei}^2 m(v_i) \right|^2$$

Uncertanties to evaluate the effective Majorana mass due to:

- Nuclear matrix element
- Quenching of the axial vector coupling constant gA

Neutrinoless double beta decay - v mass

Uncertanties to evaluate the effective Majorana mass due to:

- Nuclear matrix element
- Quenching of the axial vector coupling constant gA

Fight against background

Direct reduction of background activity

- Select and use ultra-pure materials
- Minimize all passive (non "source") materials
- Avoid material re-contamination (machining, manipulation, storage)
- Fabricate ultra-clean materials (underground fab if needed)
- underground labs reduced muon flux & related induced activations

Discrimination techniques

- Energy resolution
- Active veto detector
- Tracking (topology)
- Particle ID, angular, spatial, time correlations
- Fiducial Fits
- Granularity (arrays)
- Pulse shape discrimination (PSD)
- Ion Identification

Methods	
TPCs (liquid, gas)	¹³⁶ Xe
Doped Liquid Scintillators	¹³⁶ Xe, ¹³⁰ Te
Solid state detectors	⁷⁶ Ge, ¹¹⁶ Cd
Bolometers (+ enhancements)	¹³⁰ Te, ⁸² Se, ¹⁰⁰ Mo, ¹¹⁶ Cd
Foils with tracking chambers	⁸² Se, ¹⁵⁰ Nd, ¹⁰⁰ Mo

Both approaches are needed

Experimental set-up for P2

First prototype of photon detector

Top view:

Wärme- & Lichtdetektor

