Photon/Hadron Discrimination in Hybrid Events at the Pierre Auger Observatory

Philip Ruehl

Universität Siegen

Schule für Astroteilchenphysik 2016, Obertrubach-Bärnfels

06.10.2016

Bundesministerium für Bildung und Forschung

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□■ のへで

Short Digression: Chemical Composition at UHE

[Phys.Rev. D 90 122005]

- UHECR: nuclei from p to Fe
- change of slope suggests heavier particles at higher energies
- X_{max} (later more...) data indicates increase of A with Energy

Why searching for photons...

Models predicting the existence of UHE photons

Top-Down models:

- Z-burst scenario
- super heavy dark matter (SHDM)
- topological defects

Bottom-Up models:

Acceleration of charged nuclear primaries in

- neutron stars / pulsars
- active galactic nuclei
- propagating shock fronts
- gamma ray bursts, etc.

and interaction with CMB ($p_{GZK} + \gamma_{CMB} \rightarrow \Delta^+ \rightarrow \pi^{0(+)} + p(n)$) and $\pi^0 \rightarrow 2\gamma$

Limits on Photon Flux

[C. Bleve for the Auger Collab., ICRC 2015]

- many Top-Down models severly constrained
- if \exists UHE protons \Rightarrow also bottom-up models predict photon flux caused by the GZK-effect at up to ~ 1% CR fraction

\Rightarrow Update the limits using hybrid events

06.10.2016 4/12

Discrimination between UHE photons and nuclei

X_{max}:

- atmospheric depth of the longitudinal shower maximum
- FD observable

Add SD observables to improve separation power!

_ Dh	ilin.	Duc	ы
		nue	

SD Observable: Sb

S_b:

- sum of signals S_i in stations with distances r_i from the core
- $S_b := \sum_{i=1}^{N} \left[S_i \times \left(\frac{r_i}{r_0} \right)^b \right]$ [M. Settimo for the Auger Collab., ICRC 2011]
- uses the difference in the lateral distribution function of showers initiated by different primary types

A New SD Observable F_{γ}

F_{γ} uses the lateral profile of EAS but takes advantage of hybrid measurement

$$F_{\gamma} \coloneqq \frac{S_{1000|\gamma}}{S_{1000|Hybrid}}$$

- $S_{1000|\gamma}$: the S_{1000} value obtained from fitting the SD data with a photon-like lateral profile
- $S_{1000|Hybrid}$: the S_{1000} value obtained by using the reconstructed Hybrid energy $E_{FD} \sim S^B_{1000|Hybrid}$ and inverting the standard SD reconstruction.

$S_{1000|\gamma}$

and fitting to data using the maximum likelihood method. Extended likelihood function:

$$\mathscr{L} = \mathscr{L}_{small} \times \mathscr{L}_{large} \times \mathscr{L}_{non-trig} \times \mathscr{L}_{core} \times \mathscr{L}_{axis} \times \mathscr{L}_{\beta}$$

 \Rightarrow only free parameter is $S_{1000|\gamma}$

 \Rightarrow in principle applicable to events with only few triggered stations (\rightsquigarrow later more)

S_{1000|Hybrid}

First obtain $S_{38|Hybrid}$ from the reconstructed FD energy

$$S_{38|Hybrid} = \sqrt[B]{\frac{E_{FD}}{A}}$$

with $A = (1.68 \pm 0.05) \times 10^{17} \text{eV}$ and $B = 1.036 \pm 0.009$

Then obtain $S_{1000|Hybrid}$ by using the reconstructed zenith angle

 $S_{1000|Hybrid} = CIC(\theta) \times S_{38|Hybrid}$

 $CIC(\theta)$: 3rd order polynomial in $x = \cos(\theta) - \cos(38^{\circ})$ and empiric coefficients

Separation Power of F_{γ}

↔ high separation power between photon and proton induced air showers!

06.10.2016 10 / 12

Combination of F_{γ} and X_{max} in an MVA

99.5% background reduction at 50% signal efficiency using BDT/BDTG

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▼ ● ● ●

Summary and outlook

F_{γ} :

- high separation power between photon and proton induced showers
- useful for photon analysis especially at the lower energies measured at Auger
- combination with X_{max} allows better distinction between primary particles

next step:

Compare the performances of F_{γ} and S_b with respect to an MVA to update the upper limits of UHE photon flux starting to probe the GZK region.

Backup - The Pierre Auger Observatory

- surface detector (SD): 1660 water cherenkov tanks
- fluorescence detector (FD): 27 fluorescence telescopes at 4 locations
- simultaneous measurements with FD and SD (Hybrid Events)

Comparison With A Dense Array

 \rightsquigarrow Mean value of F_{γ} is independent of the array geometry

Consistency Check

 \rightsquigarrow advantage of F_{γ} : remains ~ constant in events with only one or two triggered stations

∃ ► ∃ = ∽ < ⊂ 06.10.2016 3/6

Quality Cut Analysis

 $\eta\coloneqq \frac{|\mu_p-\mu_\gamma|}{\sqrt{\sigma_p^2+\sigma_\gamma^2}}$

 $\Delta F_{\gamma}/F_{\gamma} < 0.5 \Rightarrow$ Efficiency > 80%

★ 문 ► ★ 문 ► 문

Backup - Quality Cut Analysis

Backup - F_{γ} for heavier nuclei

larger F_{γ} values for higher nucleon numbers \rightsquigarrow assume pure proton background for conservative estimation.

Philip Ruehl

06.10.2016 6 / 6