

Particle Physics Tutorial (Solutions)

Thomas Lohse
Schule für Astroteilchenphysik 2016
Universität Erlangen-Nürnberg

Problem 1: LHC at $\sqrt{s}=13\,\mathrm{TeV}$

a) Two gluons (of the incoming protons) collide head-on. Each carries 10% of the momentum of its proton. Compute the cm energy of the two gluons.

$$p_1 = \begin{pmatrix} xE_p \\ xE_p\vec{e}_z \end{pmatrix}$$
 $p_2 = \begin{pmatrix} xE_p \\ -xE_p\vec{e}_z \end{pmatrix}$ with $x = 0.1$, $E_p = \frac{\sqrt{s}}{2}$

$$(p_1 + p_2)^2 = \begin{pmatrix} 2xE_p \\ \vec{0} \end{pmatrix}^2 = 4x^2E_p^2 = x^2s$$

$$\sqrt{\hat{s}} = \sqrt{(p_1 + p_2)^2} = x\sqrt{s} = 0.1 \times 13 \,\text{TeV} = 1.3 \,\text{TeV}$$

Problem 1: LHC at $\sqrt{s}=13\,\mathrm{TeV}$

b) The gluons are scattered by an angle $\theta=45^{\circ}$. Compute q^2 , the square of the four-momentum transfer.

$$p_{1} = \begin{pmatrix} xE_{p} \\ 0 \\ 0 \\ xE_{p} \end{pmatrix} \quad p'_{1} = \begin{pmatrix} xE_{p} \\ 0 \\ xE_{p}\sin\theta \\ xE_{p}\cos\theta \end{pmatrix} \quad g \xrightarrow{p_{1}} \qquad p_{2} \quad g$$

$$q = p'_{1} - p_{1} = \begin{pmatrix} 0 \\ 0 \\ xE_{p}\sin\theta \\ xE_{p}(\cos\theta - 1) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0.46 \\ -0.19 \end{pmatrix} \text{TeV}$$

$$q^2 = (-0.46^2 - (-0.19)^2) \text{ TeV}^2 = -0.25 \text{ TeV}^2$$

Problem 1: LHC at $\sqrt{s}=13\,\mathrm{TeV}$

c) Compute the spatial resolution $\hbar/\sqrt{|q^2|}$ reached in this scattering process. Note: $1=\hbar c=0.2\,{\rm GeV}\,{\rm fm}$

$$\delta r = \frac{\hbar}{\sqrt{|q^2|}} = \frac{\hbar c}{\sqrt{|q^2|}} = \frac{0.2 \,\text{GeV fm}}{\sqrt{0.25} \,\text{TeV}} = 4 \times 10^{-4} \,\text{fm}$$

d) A proton of one of the LHC beams hits a proton inside a gas molecule left in the (highly evacuated) beam pipe. Compute the cm energy for this collision.

$$\sqrt{s} = \sqrt{2m_{\rm p}E_{\rm p}} = \sqrt{2 \times 0.938\,{\rm GeV} \times 6.5\,{\rm TeV}} = 110\,{\rm GeV}$$

Problem 2: Future circular collider?

The LHC has a circumference of 27 km. With the current superconducting magnets it can reach a maximum cm energy (proton-proton) of 14 TeV with 3×10¹⁴ protons per beam.

a) Consider a future LHC-like machine with a cm energy of 100 TeV. Assume that by aggressive R&D one can double the field of the magnets. Find the circumference of the ring.

$$R = \frac{\gamma m v}{eB} \stackrel{v \approx c=1}{\approx} \frac{\gamma m}{eB}$$

$$\frac{C_{\text{FCC}}}{C_{\text{LHC}}} = \frac{E_{\text{FCC}}B_{\text{LHC}}}{E_{\text{LHC}}B_{\text{FCC}}} = \frac{100 \times 1}{14 \times 2} = 3.57$$

$$C_{\rm FCC} = 3.57 \times 27 \, \text{km} = 96 \, \text{km}$$

Problem 2: Future circular collider?

The LHC has a circumference of 27 km. With the current superconducting magnets it can reach a maximum cm energy (proton-proton) of 14 TeV with 3×10^{14} protons per beam.

b) The synchrotron radiation power of one LHC beam (at design) is 6 kW. What would be the corresponding power for the new machine assuming the same number of particles per length?

$$\begin{split} P &\propto N \gamma^4 R^{-2} \propto N E^4 C^{-2} \\ N &\propto C \quad \Rightarrow \quad P \propto E^4 C^{-1} \\ \frac{P_{\text{FCC}}}{P_{\text{LHC}}} &= \left(\frac{E_{\text{FCC}}}{E_{\text{LHC}}}\right)^4 \times \frac{C_{\text{LHC}}}{C_{\text{FCC}}} = \left(\frac{100}{14}\right)^4 \times \frac{1}{3.57} = 729 \\ P_{\text{FCC}} &= 729 \times 6 \,\text{kW} = 4.4 \,\text{MW} \end{split}$$

Problem 2: Future circular collider?

The LHC has a circumference of 27 km. With the current superconducting magnets it can reach a maximum cm energy (proton-proton) of 14 TeV with 3×10^{14} protons per beam.

c) Consider now an electron-positron collider in the same tunnel, able to produce top-quark pairs (cm energy 350 GeV). Compute the synchrotron radiation power if 100 bunches, each with 10¹¹ particles are stored per beam.

$$P = N \times \frac{q^2}{6\pi} \gamma^4 R^{-2} \propto \frac{N}{C^2} \left(\frac{E}{m}\right)^4$$

$$N_{\rm p} = 3 \times 10^{14} \times \frac{C_{\rm FCC}}{C_{\rm LHC}} = 1.1 \times 10^{15}$$

$$\frac{P_{\rm e}}{P_{\rm p}} = \frac{N_{\rm e}}{N_{\rm p}} \frac{C_{\rm p}^2}{C_{\rm e}^2} \left(\frac{E_{\rm e} m_{\rm p}}{E_{\rm p} m_{\rm e}}\right)^4 = \frac{10^{13}}{1.1 \times 10^{15}} \times 1 \times \left(\frac{0.350 \times 938}{100 \times 0.511}\right)^4 = 15.9$$

 $P_{\rm e} = 15.9 \times P_{\rm p} = 70 \, {\rm MW}$

Problem 3: What is the correct pronunciation of:

Richard P. Feynman

Richard P. "FineMan"

fainmən

Problem 4: Event quizz

Look at the following event displays and identify final state objects. Can you imagine which process could have taken place? If possible, draw a Feynman diagram.

AMS-02

incoming electron (or positron), absorbed in ECAL

Problem 6: Fill all charge numbers (if applicable) into the following table.

particle $Q \mid I \mid I_3 \mid Y \mid$ colored? y/n

 $+\frac{1}{2}$

 $+\frac{1}{2}$

-1

-1

-2

 $+\frac{1}{3}$

 $-\frac{2}{3}$

()

()

()

n (singlet)

n (singlet)

y (triplet)

y (triplet)

n (singlet)

n (singlet)

n (singlet)

n (singlet)

y (octet)

 $\frac{1}{2}$

 $\frac{1}{2}$

()

0&1

0&1

-1

 $+\frac{2}{3}$

 $-\frac{1}{3}$

()

0

0

 $u_{\mu_{
m L}}$

 $au_{
m R}$

 $t_{\rm L}$

 b_{R}

 $\nu_{ au R}$

g

Problem 7: WW scattering

In the lecture we discussed all diagrams (of leading order) contributing to the process:

$$W^+W^- \to W^+W^-$$

Draw all leading order diagrams contributing to the related process:

$$W^+W^+ \to W^+W^+$$

Draw a diagram which shows, how this scattering could happen at the LHC in proton-proton collisions.

$$W^+W^+ \rightarrow W^+W^+$$

At the LHC:

- 2 (leptonic) W⁺ decays
- 2 high $p_{\rm T}$ forward jets