Silicon PMs for future detectors at the Pierre Auger Observatory

SPONSORED BY THE

Johannes Schumacher schumacher@physik.rwth-aachen.de

Federal Ministry of Education and Research

Astroteilchenschule 2014 Obertrubach-Bärnfels, BY

Shower particles

Fluorescence detector

- Fluorescence telescope
- Schmidt telescope design
- 440 pixel PMT (QE ~ 25%) camera
- Duty cycle: ~13%

FAMOUS

- Fluorescence telescope prototype
- Refractive telescope design
- 64 pixel SiPM (PDE ~ 35%) camera
- Duty cycle: ?

 \rightarrow increase sensitivity!

faint, distant showers - increase duty cycle

Muon detector

- Surface detector
- Water Cerenkov detector
- 3 PMTs
- Duty cycle: ~100%

- 64 SiPMs
- Duty cycle: ~100%

→ measure muon component

<u>Silicon photomultipliers</u>

- SiPM: Pixelated photo detector
- hundred to several thousand G-APDs connected in parallel
- Passive quenching through quenching resistor Rq
- Size: few mm² per SiPM

Silicon photomultipliers

Newest Hamamatsu SiPMs

prototypes

- High PDE (45% 60%)
- High spatial / time resolution (~100 ps)
- \sim Moderate supply voltage V_b < 100 V
- Robust technology
- Low cost
- (Correlated) noise (70 kHz mm⁻²)
- * Temperature dependence Gain ~ g0 (1 – β (T – T₀)), β ~ 2-3 % K⁻¹
- ✓ Small size (\rightarrow a lot of read-out channels needed)

challenging

- Dramatically reduced in new SiPMs
- compensable

Silicon photomultipliers

- High PDE (45% 60%)
- High spatial / time resolution (~100 pş)
- \sim Moderate supply voltage V_b < 100 V
- Robust technology
- Low cost
- (Correlated) noise (70 kHz mm⁻²)
- * Temperature dependence Gain ~ g0 (1 β (T T__)), β ~ 2-3 % K^-1
- Small size (→ a lot of read-out channels needed)

<u>Silicon photomultipliers</u>

- High PDE (45% 60%)
- High spatial / time resolution (~100 ps)
- \sim Moderate supply voltage V_b < 100 V
- Robust technology
- Low cost
- * (Correlated) noise (70 kHz mm⁻²)
- Temperature dependence
 Gain ~ g0 (1 β (T T₀)), β ~ 2-3 % K⁻¹
- Small size (→ a lot of read-out channels needed)

Silicon photomultipliers

channels needed)

FAMOUS*

FAMOUS / FAMOUS⁶⁴

64-pixel

telescope

FAMOUS⁷

telescope

prototype

7-pixel

* First Auger Multipixel photon counter camera for the Observation of Ultra-high-energy air Showers

In cooperation with Lisbon & Granada

(with 7-pixel telescope)

FAMOUS⁷ overview

7-pixel variant of FAMOUS

- Hamamatsu S10985-100C (4 channel SiPM)
- Electronic read-out
 - Analogue sum (4 channels / pixel)
 - \rightarrow digitisation using a QDC*

Pre-prototype evaluation

* QDC = Charge to digital converter

 \rightarrow Ready for testing!

FAMOUS⁷ commissioning

July 2014

Star (Arcturus) transit measurement

200 ns charge integral

Colour-coded: time information Bubble size: light intensity

FAMOUS⁷ commissioning

June 2014

In cooperation with IceCube

...towards FAMOUS⁶⁴

- PDE > 35% in UV
- 4 channel 6x6 mm²

- Read-out electronics prototyping:
 - Analog signal amplifiers, FADC digitisation, Temperature compensation
 SiPMs, arrived

Summary

FAMOUS

Characterisation finished, 7pixel version measured star and moon transits

AMD

Funding, Steel-housing, readout electronics, detector performance simulations

Outlook

<u>FAMOUS</u> Upgrade to 64 pixels, trigger analysis

<u>AMD</u> Fiber-SiPM coupling, advanced detector simulations, detector construction

In cooperation with CMS IIIA

MA Meißner

SiPM – Fiber coupling

MA Meißner

Read-out electronics

Backup

Michael Eichler, Julian Grothoff, Thomas Hebbeker, Franziska Knuth, Tobias Kowalew, Markus Lauscher, Sebastian Mann, Rebecca Meißner, Lukas Middendorf, Tim Niggemann, Christine Peters, Barthel Philipps, Johannes Schumacher, Maurice Stephan, Daniel Wilson, Franz-Peter Zantis

SiPM arrays

EASIROC Read-out electronics

- Extended Analogue SIpm ReadOut Chip
- 32 input channels with 2 parallel preamplifiers (VGA)
- Fast discriminator output
- individual bias voltage regulation

→ Firmware written, tests ongoing

SiPM array read-out

(MA Niggemann, Peters, Eichler)

Fresnel lens characterisation

(BA Grothoff, Knuth), Sommer FAMOUS⁷ slow control & event selection

Astrometry found Ophiuchus constellation

Focal plane pixels

0.45

0.30

0.15

0.00

-0.15

-0.30

-0.45

difference

channe

SiPM gain compensation

Normalised gain vs. temperature

SiPM read-out

SiPM large pulse performance

QDC

Integrated SiPM signal, 25 ns gate width

Fresnel lens

Hamamatsu S10362-11-100C, Tadday 2010

Famous-64 event display

Geant4 simulation framework available!

<u>Silicon photomultipliers</u>

AMD performance

