Design of a Tabletop Spectrometer following the MAC-E-Filter Principle

Maik Schneider

WWU-Münster

October 13, 2014

- kinematic measurement of the neutrino mass
- search for shift in the $\beta\text{-spectrum}$ of tritium
- strongest imprint in the endpoint region

MAC-E-Filter Principle

 \Rightarrow charactaristic parameter: magnetic moment $\mu = \frac{E_{\perp}}{B} = const.$

- \bullet compact setup for the measurement of the tritium $\beta\mbox{-spectrum}$ in laboratory classes
- $\bullet\,$ usage of permanent staff magnets (NdFeB) up to $\approx 1~{\rm T}$

Magnetic Setup

- electrons travel from north- to southpole of central magnet
- \bullet iron screen creates magnetic minimum \Rightarrow analyzing plane

Pinch Setup

• high pitch angle $(\triangleleft \vec{v}, \vec{B})$ particles are reflected by magnetic maxima • $\theta_{max} = \arcsin\left(\sqrt{\frac{B_{max}}{B_{min}}}\right)$

• ring magnets are polarised oppositely to the central magnet

•
$$\begin{array}{c} B_{max} = 0.92 \text{ T} \\ B_{src} = 0.75 \text{ T} \end{array}
ight\} \Rightarrow heta_{max} = 64.86^{\circ}. \end{array}$$

Magnetic Setup

- bigger magnetic screen
- analyzing field supported by an air coil
- pinch setup in front of the source ΔE

Electrostatic Setup

- $\bullet\,$ electrons start at 18.6 $\rm kV$ at the source
- \bullet analyzing voltage generated through screen and outer wall voltage of 0 $\rm V$
- Problem: toroidal electrodes are complex to manufacture

Electrostatic Setup

- electrodes are mounted on circular ring plates
- $\bullet\,$ central magnet and ring magnets on 0 $\rm V$
- $\bullet\,$ retardation in the pinch still $\approx 1~{\rm kV}$

Simulation Results

• track simulation via runge-kutta-method (4th-order)

- $\bullet\,$ simulations in 10 ${\rm eV},5^\circ$ steps
- strong deviation from analytical expectation for specific angles

track in the pinch area

- strong field gradients in one cyclotron motion ($\Delta B = 0.2 \text{ T}$)
- violation of the adiabatic criteria?

track in the analyzing plane

starting angle 55°

starting angle 40°

- electrons reach B_{min} before arriving at the analyzing plane!
- ullet \Rightarrow E_{\perp} 'freezes' at this point

progression of the magnetic moment

• $\Delta \mu = (\mu - \mu_0)/\mu_0$

- chaotic progress in the pinch area
- oscillation due to cyclotron motion
- effects phase dependent

- setup not usable as a MAC-E-Filter
- electrons are not able to perform adiabatic motion
- magnetic field strongly inhomogenous near analyzing plane

- locate pinch in front of the detector
- reduce magnetic inhomogeneity

Alternative Setup

- magnetic guiding field spans between two magnets
- electrodes on qU_0 analyzing voltage for retardation