technische universität tu dortmund

Experimentelle Physik Vb Astroteilchenphysik

New Cross Section for Muon-Proton-Bremsstrahlung

Thorben Menne 10.10.2014

IceCube Simulation

IceCube Simulation

tu

tu

IceCube Simulation

PROPOSAL

PRopagator with Optimal Precision and Optimized Speed for All Leptons

• ... Optimal Precision ...

- aiming for exact simulation
- small errors in cross sections necessary
- systematic errors higher than statistical ones
- cross sections for different interactions

Bremsstrahlung Cross Sections in PROPOSAL

- 4 different parametrizations
- based on Bethe-Heitler formula, QED
- various corrections

Bremsstrahlung Cross Sections in PROPOSAL

- 4 different parametrizations
- based on Bethe-Heitler formula

tu

New Cross Section

existing c.s.

- static field
 - not Lorentz-invariant

- valid for very high energies only
- Thomas-Fermi formfactors

dynamic field with recoil

new c.s.

- explicit Lorentz-invariant
- semi automatic calculation possible
- no kinematical approximations
- proton form-factors from 2013 measurements

tu

New Cross Section

• effective proton-vertex function $\Gamma_{\mu} = F_1(q^2)\gamma_{\mu} +$

$$\frac{\mathrm{i}\sigma_{\mu\nu}q^{\nu}}{2M}F_2(q^2)$$

- tree level QED calculation
- find best working phase space

Computer Aided Calculation

Phase Space

First Approach

recursively build up phase space $R_3 = \frac{1}{2\sqrt{s}} \int dM_2 \,\Omega_2 \, \frac{p_3}{2} \int d\Omega_1 \frac{p_2}{2}$

Problems

tu

Phase Space

Second Approach

- two energies and two angles
- better suited for bremsstrahlung

$$R_3 = \frac{\pi}{4} \int \mathrm{d}E_5 \,\mathrm{d}E_3 \,\mathrm{d}\cos\theta \,\mathrm{d}\eta$$

15

Second Approach

tu

Second Approach

better than first approach

similar behavior to existing cross sections But:

both calculations in center of mass system

not comparable to existing cross sections

Phase Space

Third Approach

- 4 kinematic invariants
- complicated border functions
- comparison to existing cross sections possible

$$R_3 = \frac{\pi}{16\sqrt{\lambda(s, m_1^2, m_2^2)}} \int dt_{25} \, ds_{34} \, \int ds_{45} \, dt_{13} \, \frac{1}{\sqrt{-\Delta_4}}$$

Summary

need for more precise cross sections

- systematic errors higher than statistical ones
- new muon-proton-bremsstrahlung cross section
 - numerical calculation problematic
 - instable even for small energies
 - optimal phase space not found yet
- Further studies only make sense if numerical integration problem is solved

