Image processing for Cherenkov telescopes

Ramin Marx

Max-Planck-Institut für Kernphysik, Heidelberg

October 13, 2014

Ramin Marx (MPIK)

Image processing for Cherenkov telescopes

October 13, 2014 1 / 21

Rätsel des Universums

-

• • • • • • • • • • • •

2

Rätsel des Universums

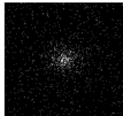
\nearrow

Warum ist dort ein Quadrat?

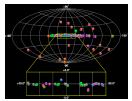
Ramin Marx (MPIK)

Image processing for Cherenkov telescopes

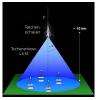
Gamma Astronomy compared to Optical Astronomy


Galileo Galilei with his optical telescope

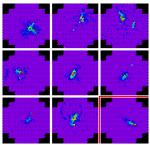
H.E.S.S. II

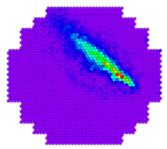


Crab Nebula in visible light

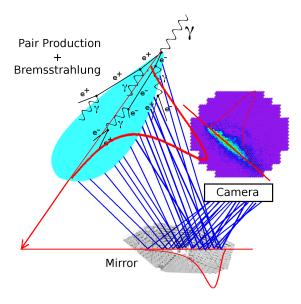


Crab Nebula in gamma rays

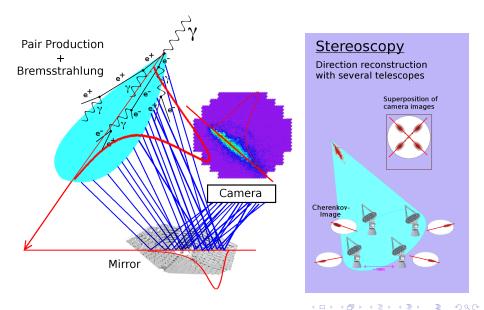

What is different in Gamma Astronomy?


relatively few gamma sources

gamma rays do not pass through the atmosphere, but induce air showers

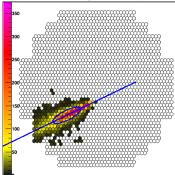


high background level: only 1 of 10^5 events is a gamma, furthermore, it can be difficult to recognize them



air shower images are taken with the camera and then analysed

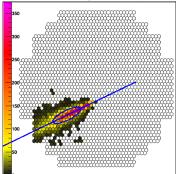
Air Showers and Cherenkov Telescopes



Air Showers and Cherenkov Telescopes

Hillas-Analysis of the Air Shower Image

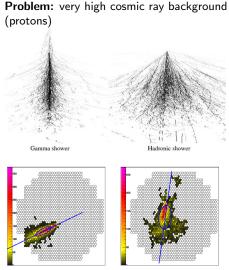
Describe air shower image with an ellipse:


parameters of the Hillas-ellipse:

- centre of gravity
- width and length
- amplitude of image

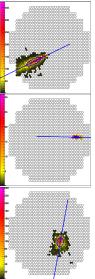
\Rightarrow energy, direction and ... type of particle

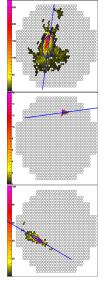
Hillas-Analysis of the Air Shower Image


Describe air shower image with an ellipse:

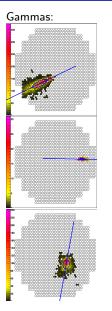
parameters of the Hillas-ellipse:

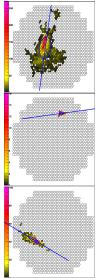
- centre of gravity
- width and length
- amplitude of image


\Rightarrow energy, direction and ... type of particle

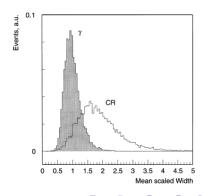

 \Rightarrow Gamma-Hadron separation is very important

Gamma-Hadron-Separation using Hillas-Width




Hadrons:

Gamma-Hadron-Separation using Hillas-Width



Hadrons:

The classical separation method exploits that hadronic images are wider than gamma images.

\Rightarrow cut on Hillas-Width:

Ramin Marx (MPIK)

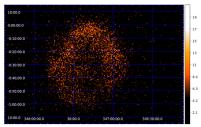
Image processing for Cherenkov telescopes

October 13, 2014 7 / 21

Gamma-Hadron Separation - Why?

Example: RXJ1713, exposure time: 167 hours, one pixel is $0.01^{\circ} \times 0.01^{\circ}$

without gamma-hadron separation


Gamma-Hadron Separation - Why?

Example: RXJ1713, exposure time: 167 hours, one pixel is $0.01^\circ \times 0.01^\circ$

without gamma-hadron separation

 \Rightarrow gamma-hadron separation is essential

with gamma-hadron separation

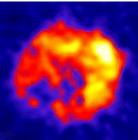


Image processing for Cherenkov telescopes

Gamma-Hadron Separation - How?

General Approach

- + simulate many gamma and hadron air showers
- + parameterize shower images
- $+\,$ gammas and protons show different distributions for the same feature $\rightarrow\,$ cut on the distributions to select gamma-like events

Gamma-Hadron Separation - How?

General Approach

- + simulate many gamma and hadron air showers
- + parameterize shower images
- $+\,$ gammas and protons show different distributions for the same feature $\rightarrow\,$ cut on the distributions to select gamma-like events

Improve separation power by

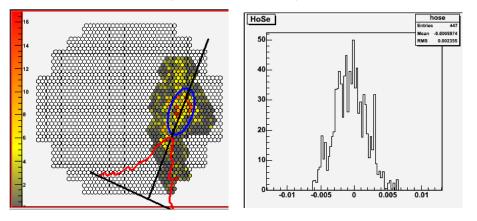
- finding new parameterisations that are more sensitive to the differences between gammas and hadrons
- using machine learning algorithms that combine these features optimally

Gamma-Hadron Separation - How?

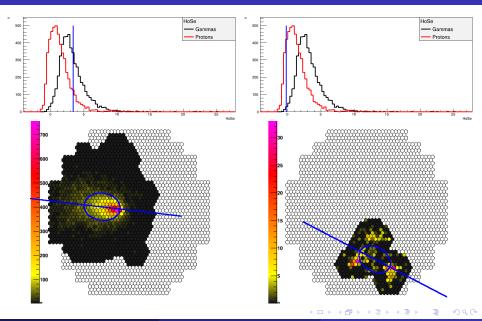
General Approach

- + simulate many gamma and hadron air showers
- + parameterize shower images
- $+\,$ gammas and protons show different distributions for the same feature $\rightarrow\,$ cut on the distributions to select gamma-like events

Improve separation power by

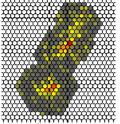

- finding new parameterisations that are more sensitive to the differences between gammas and hadrons
- using machine learning algorithms that combine these features optimally

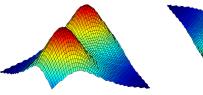
Some methods we are developing

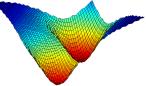

- HoSe (Hofmann Separation)
- 2 Watershed
- 3 Average Intensity in Growing Ellipse
- Cross Correlation

Method 1: HoSe (Hofmann Separation)

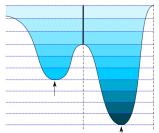
- project pixel intensities onto minor axis of Hillas Ellipse
- calculate 4. moment (measure peakedness)

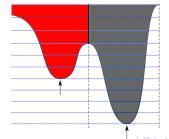


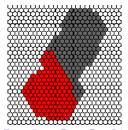

HoSe, 5000 events, Amp \geq 80 pe



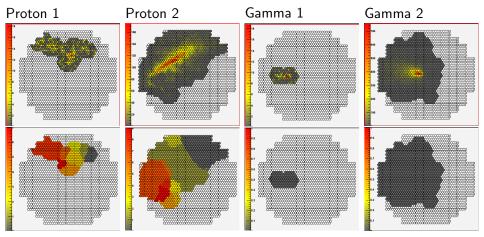
Method 2: Watershed (1/2)


Smooth image, interpret as 3D landscape (intensity \rightarrow elevation), invert:





Then flood it and assign every basin a different label



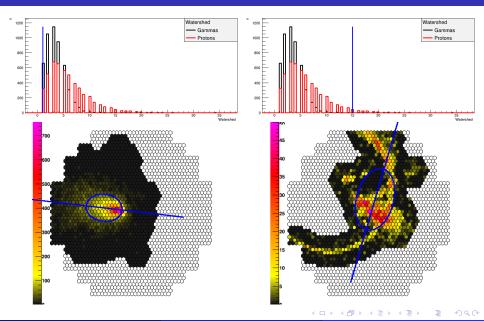

Ramin Marx (MPIK)

Image processing for Cherenkov telescopes

Segmentation results for typical gamma and proton events:

Watershed, 5000 events, $Amp \ge 80$ pe

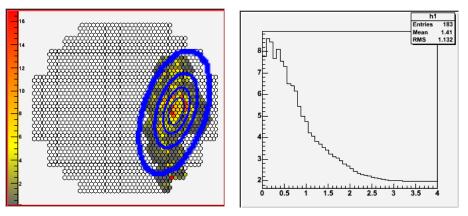
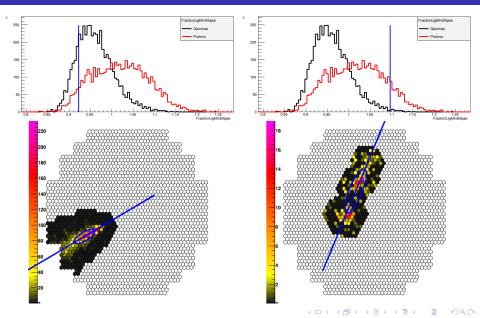
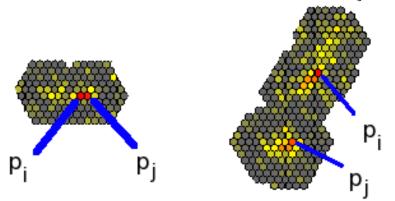
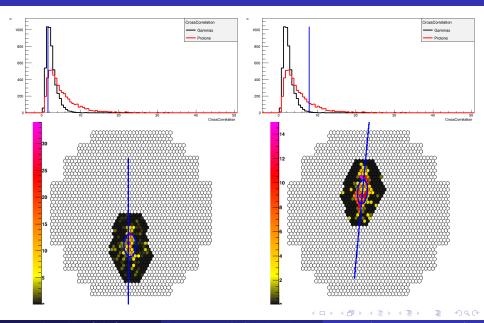

Ramin Marx (MPIK)

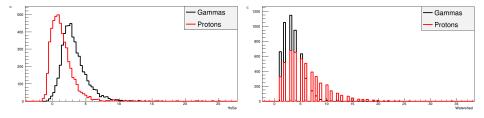
Image processing for Cherenkov telescopes

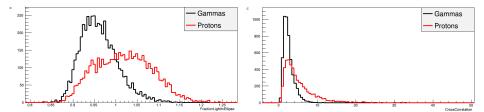

October 13, 2014 14 / 21

Method 3: Average Intensity in Ellipses

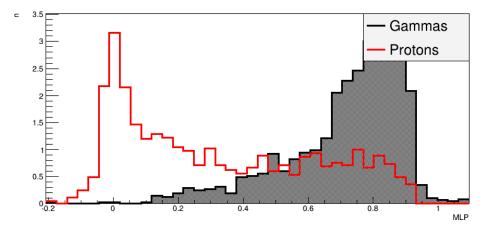

- vary size of Hillas Ellipse
- average intensity in that ellipse
- get RMS


Average Intensity in Ellipses, 5000 events, Amp \geq 80 pe


penalize pixel pairs with high intensity and long distance $p = \sum_{i,i} p_i p_j / r$



Cross Correlation, 5000 events, $Amp \ge 80$ pe


Overview of all Classifiers

< 一型

Combining all Classifiers in root-TMVA (MLP)

• image analysis is important for gamma-ray astronomy

э