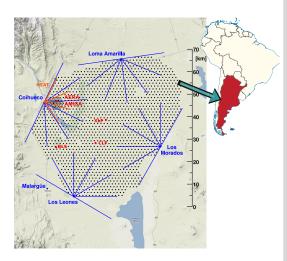
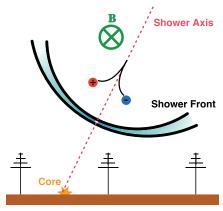


Time calibration of AERA using Airplanes

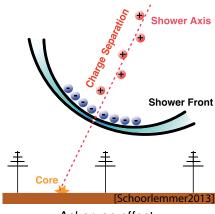
Andreas Lang for the Pierre-Auger-Collaboration | 13th October 2014


Karlsruhe Institut of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany

The Pierre Auger Observatory



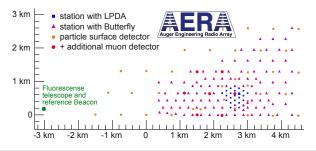
- Area ca. 3000 km²
- 1660 water Cherenkov tanks
- 5 fluorescence detectors
- World's largest detector for cosmic rays



Radio Emission of Cosmic Rays

Geomagnetic effect

Askaryan effect


AERA – Auger Engineering Radio Array

- 124 autonomous radio stations
- Area ~ 6 km²
- Band width: 30-80 MHz
- World's largest radio field for air showers

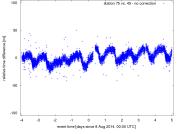
Motivation for time calibration:

- Accurate analysis of:
 - Arrival direction (with triangulation)
 - Mass composition (X_{max})
 - Interferometry

Time calibration

Challenges

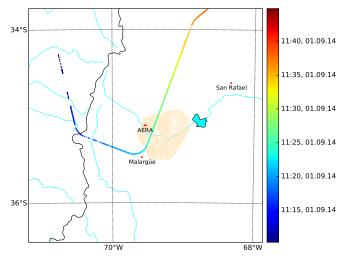
- lacktriangle relative time offset between the stations pprox 1 ns
- $lue{}$ GPS clocks precise in a range of 20 ns (expected \sim 5 ns)
- For time calibration needed: transmitter with known position
- One method: calibration with beacon


Beacon

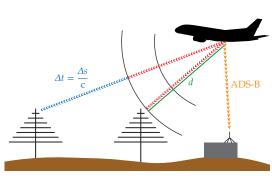
- Sine wave at 4 frequencies
- Some kilometers distance to AERA
- Beats between the 4 frequencies
- Arrival time in every stations compared to one reference station
 - ⇒ Time difference between expected and measured time of several 10 ns
- Verification with different method:

 \implies airplanes

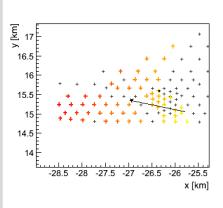
Determination of airplane position

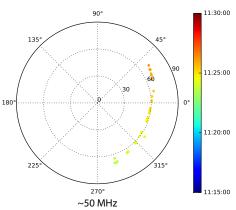

- Airplane position as ADS-B (Automatic Dependent Surveillance - Broadcast) message at 1090 MHz
- DVB-T USB dongle as receiver
- Open source software to decode the ADS-B messages
- Information of latitude, longitude, altitude, heading and speed
- Range more than 400 km

Airplane trajectory out of ADS-B data


Boeing 737-8EH flying from Santiago de Chile to São Paulo

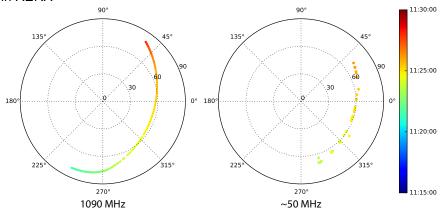
Calibration procedure


- Calculation of distance between airplane position and every AERA station
- Calculation of pulse arrival time relative to one reference station
- Measurement of the actual arriving time
- Time delay between the stations out of the difference

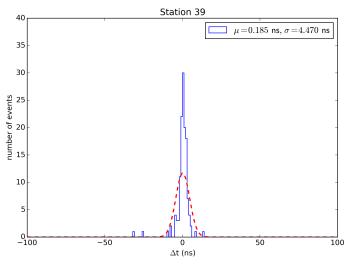


Airplane pulses in AERA

MHz pulses of airplanes seen in AERA



Analysis with one airplane


Airplane position out of ADS-B data and 34 events of the same airplane in AERA

Combination of AERA and ADS-B data

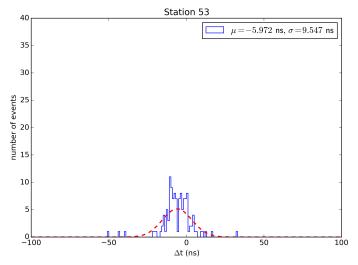
Time difference between station 39 and station 40

Conclusion

- possible to get airplane positions (ADS-B) and events (AERA)
- beacon can be checked
- airplane method precise in a range of ns
- possible errors:
 - correct airplane position?
 - time delay between receiving position and broadcasting ADS-B ($v \approx 200\text{-}250 \text{ m/s}$)
 - dimension of airplane
- only 2-3 aiplanes a month with data in AERA

Different Antennas

log-periodic dipole antenna



Butterfly antenna

Combination of AERA and ADS-B data

Time difference between station 53 and station 40

