Fast Single-Top Cross Section Predictions for Hadron Colliders with the HATHOR Program

Philip Kant, Oliver Maria Kind, **Thomas Kintscher**, Thomas Lohse, Till Martini, Stefan Mölbitz, Patrick Rieck, Peter Uwer

Humboldt-Universität zu Berlin

15. Oktober 2014

### Outline

#### Introduction

The Top Quark Calculating Hadronic Cross Sections

#### Extraction of Partonic Cross Sections

Method 1: Modification of PDFs Method 2: Exact Extraction Implementation in HATHOR Consistency Check

Practical Studies on the Production of Single Top-Quarks

Summary

# The Top Quark in the Standard Model

- Standard model: fundamental interactions of elementary particles
- $m_{\rm t} = 173.5 \, {\rm GeV}$ , charge  $+\frac{2}{3} {\rm e}$
- Short lifetime: 5 × 10<sup>-25</sup> s
- Typical decay:  $t \rightarrow Wb$
- Direct measurement of  $|V_{tb}|^2$
- Suitable laboratory for new physics: e.g. anomalous couplings

### Requirements:

- Precise knowledge of the cross section and its dependences: scales, parton densities, couplings, masses, ...
- Quick calculation desireable!



# The Top Quark in the Standard Model

- Standard model: fundamental interactions of elementary particles
- $m_{\rm t} = 173.5 \, {\rm GeV}$ , charge  $+\frac{2}{3} {\rm e}$
- Short lifetime: 5 × 10<sup>-25</sup> s
- Typical decay:  $t \rightarrow Wb$
- Direct measurement of  $|V_{tb}|^2$
- Suitable laboratory for new physics: e.g. anomalous couplings

### Requirements:

- Precise knowledge of the cross section and its dependences: scales, parton densities, couplings, masses, ...
- Quick calculation desireable!



# Calculating Hadronic Cross Sections

Factorisation into PDFs and partonic cross section:



$$\sigma_{\mathsf{had}} = \sum_{ij} \int_0^1 \mathsf{d} x_1 \int_0^1 \mathsf{d} x_2 \, \phi_{i,\mathsf{h}_1}(x_1,\mu_\mathsf{F}) \, \phi_{j,\mathsf{h}_2}(x_2,\mu_\mathsf{F}) \, \hat{\sigma}_{ij}(\hat{s},\mu_\mathsf{F})$$

φ(x,μ<sub>F</sub>) parton densities
 δ<sub>ij</sub>(ŝ,μ<sub>F</sub>) partonic cross section
 ŝ=x<sub>1</sub>x<sub>2</sub>s part. centre-of-mass energy
 μ<sub>F</sub> factorisation scale

## Top Pair Production

Top anti-top pairs produced by strong interaction



Implemented in the HATHOR program

- Fast calculation of hadronic cross sections for tt production:
  - [M. Aliev et al, Comput.Phys.Commun.182: 1034-1046, 2011]
- Provides reference values in NNLO-QCD:



Calculation of theoretical uncertainties (PDFs, scales, ...)

# Top Pair Production

Top anti-top pairs produced by strong interaction



- Implemented in the HATHOR program
  - Fast calculation of hadronic cross sections for tt production:
    - [M. Aliev et al, Comput.Phys.Commun.182: 1034-1046, 2011]
  - Provides reference values in NNLO-QCD:



Calculation of theoretical uncertainties (PDFs, scales, ...)

# Top Pair Production

Top anti-top pairs produced by strong interaction



Implemented in the HATHOR program

- Fast calculation of hadronic cross sections for tt production: [M. Aliev et al, Comput.Phys.Commun.182: 1034-1046, 2011]
- Provides reference values in NNLO-QCD:



Calculation of theoretical uncertainties (PDFs, scales, ...)

### Electroweak Top-Quark Production

Production of single top-quarks:



*s*-channel

*t*-channel

Wt production

- NLO calculation exists in MCFM, not in HATHOR (Monte Carlo for FeMtobarn processes)
- ▶ Long running: O(1h) per hadronic cross section
- Studying theoretical uncertainties: repeated execution necessary, requires O(days)

 $\Rightarrow$  Desireable:

Faster calculation of total hadronic cross sections

## Electroweak Top-Quark Production

Production of single top-quarks:



*s*-channel

*t*-channel

Wt production

- NLO calculation exists in MCFM, not in HATHOR (Monte Carlo for FeMtobarn processes)
- ► Long running: O(1h) per hadronic cross section
- Studying theoretical uncertainties: repeated execution necessary, requires O(days)

 $\Rightarrow$  Desireable:

Faster calculation of total hadronic cross sections

# Electroweak Top-Quark Production

Production of single top-quarks:



*s*-channel

*t*-channel

Wt production

- NLO calculation exists in MCFM, not in HATHOR (Monte Carlo for FeMtobarn processes)
- ► Long running: O(1h) per hadronic cross section
- Studying theoretical uncertainties: repeated execution necessary, requires O(days)
- $\Rightarrow$  Desireable:

Faster calculation of total hadronic cross sections

## Outline

#### Introduction

The Top Quark Calculating Hadronic Cross Sections

#### Extraction of Partonic Cross Sections

Method 1: Modification of PDFs Method 2: Exact Extraction Implementation in HATHOR Consistency Check

Practical Studies on the Production of Single Top-Quarks

Summary

$$\sigma_{\mathsf{had}}(s) = \sum_{ij} \int \mathsf{d}x_1 \, \mathsf{d}x_2 \, \phi_{i,\mathsf{h}_1}(x_1,\mu_\mathsf{F}) \, \phi_{j,\mathsf{h}_2}(x_2,\mu_\mathsf{F}) \, \hat{\sigma}_{ij}(\underbrace{x_1x_2s}_{\hat{s}},\mu_\mathsf{F})$$

For tt production:

•  $\hat{\sigma}$  has closed-form expression (function of  $\hat{s}$ )

For single-top quark production:

- Code for  $\hat{\sigma}$  does not exist in closed-form
- $\hat{\sigma}(\hat{s})$  implemented in MCFM as follows:

$$\hat{\sigma} = \underbrace{\int_{n} d\sigma_{LO}}_{n} + \underbrace{\int_{n} d\sigma_{virt.}}_{n+1} + \underbrace{\int_{n+1} d\sigma_{real}}_{n+1} + \underbrace{\int_{n+1} d\sigma_{fact.}}_{n+1}$$

sy, finite \_\_\_\_\_infrared/collinear divergences in each par

► Integration of real and virtual corrections on different phase spaces ⇒ Cancellation of divergences is not trivial

$$\sigma_{\mathsf{had}}(s) = \sum_{ij} \int \mathsf{d}x_1 \, \mathsf{d}x_2 \, \phi_{i,\mathsf{h}_1}(x_1,\mu_\mathsf{F}) \, \phi_{j,\mathsf{h}_2}(x_2,\mu_\mathsf{F}) \, \hat{\sigma}_{ij}(\underbrace{x_1x_2s}_{\hat{s}},\mu_\mathsf{F})$$

For tī production:

•  $\hat{\sigma}$  has closed-form expression (function of  $\hat{s}$ )

For single-top quark production:

- Code for  $\hat{\sigma}$  does not exist in closed-form
- $\hat{\sigma}(\hat{s})$  implemented in MCFM as follows:

$$\hat{\sigma} = \underbrace{\int_{n} d\sigma_{\text{LO}}}_{\text{easy, finite}} + \underbrace{\int_{n} d\sigma_{\text{virt.}} + \int_{n+1} d\sigma_{\text{real}} + \int_{n+1} d\sigma_{\text{fact.}}}_{\text{infrared/collinear divergences in each part}}$$

► Integration of real and virtual corrections on different phase spaces ⇒ Cancellation of divergences is not trivial

Single Top-Quark Production with HATHOR

# Extraction of Partonic Cross Sections (I)

$$\sigma_{\mathsf{had}}(s) = \sum_{ij} \int \mathsf{d}x_1 \, \mathsf{d}x_2 \, \phi_{i,\mathsf{h}_1}(x_1,\mu_\mathsf{F}) \, \phi_{j,\mathsf{h}_2}(x_2,\mu_\mathsf{F}) \int \mathsf{d}\hat{\sigma}_{ij}(\underbrace{x_1x_2s}_{\hat{s}},\mu_\mathsf{F})$$

- Target: Extract  $\hat{\sigma} = \int d\hat{\sigma}(\hat{s})$
- Idea: Fix the partonic centre-of-mass energy ŝ in integration
- Minimal-invasive approach: replace PDFs with delta functions

$$\phi(\mathbf{x}) \xrightarrow{insert} \delta(\mathbf{x} - \mathbf{x_0}) \approx \frac{1}{\sqrt{2\pi w}} \exp\left(-\frac{(x - x_0)^2}{2w^2}\right)$$

- MCFM calculates effectively  $\hat{\sigma}$  at arbitrary position  $x_0^2 s$
- Simple and quick implementation
- X Inefficient in numerical integration (esp. at  $w \rightarrow 0$ )
- X Systematic error due to finite width w of PDFs

Single Top-Quark Production with HATHOR

# Extraction of Partonic Cross Sections (I)

$$\sigma_{\mathsf{had}}(s) = \sum_{ij} \int \mathsf{d}x_1 \, \mathsf{d}x_2 \, \phi_{i,\mathsf{h}_1}(x_1,\mu_\mathsf{F}) \, \phi_{j,\mathsf{h}_2}(x_2,\mu_\mathsf{F}) \int \mathsf{d}\hat{\sigma}_{ij}(\underbrace{x_1x_2s}_{\hat{s}},\mu_\mathsf{F})$$

- Target: Extract  $\hat{\sigma} = \int d\hat{\sigma}(\hat{s})$
- ▶ Idea: Fix the partonic centre-of-mass energy  $\hat{s}$  in integration
- Minimal-invasive approach: replace PDFs with delta functions

$$\phi(x) \xrightarrow{insert} \delta(x-x_0) \approx \frac{1}{\sqrt{2\pi}w} \exp\left(-\frac{(x-x_0)^2}{2w^2}\right)$$

- MCFM calculates effectively  $\hat{\sigma}$  at arbitrary position  $x_0^2 s$
- Simple and quick implementation
- **×** Inefficient in numerical integration (esp. at  $w \rightarrow 0$ )
- X Systematic error due to finite width w of PDFs

## Extraction of Partonic Cross Sections (I)

#### Result: NLO contributions in single-top t-channel



Timespan: several weeks for all processes!

Thomas Kintscher

Single Top-Quark Production with HATHOR

# Extraction of Partonic Cross Sections (II)

Alternative approach:

- Identification of partonic centre-of-mass energy in MCFM
- Insert exact delta functions:

$$\hat{\sigma}(\hat{s}) = \int \delta(x_1 - x_0) \,\delta(x_2 - x_0) \,\mathrm{d}\hat{\sigma}(x_1 x_2 s) \,\mathrm{d}x_1 \,\mathrm{d}x_2$$

- Adjustments to x<sub>1,2</sub> directly in MCFM code
- ✓ Very efficient extraction von  $\hat{\sigma}$
- 🗸 No inherent, systematic error
- X Invasive modifications to the code necessary

# Comparison of Both Methods

Relative difference of both methods in *t*-channel ( $ub \rightarrow tq$ )



⇒ Using this (2nd) method: Extraction as function of  $\hat{s}$  and  $m_t$  possible

Single Top-Quark Production with HATHOR

## Partonic Cross Section

- Extraction of  $\hat{\sigma}$  for many sampling points  $\hat{s}$  und  $m_{\rm t}$
- Implementation of  $\hat{\sigma}$  in HATHOR
- ▶ Interpolation of  $\hat{\sigma}(\hat{s}, m_t)$  on 2D grid necessary ( $\rho = m_t^2/\hat{s}$  helps)



# Consistency Check



• HATHOR: Convolution of extracted  $\hat{\sigma}$  and PDFs

- Comparison of \(\sigma\_{had}\) with complete MCFM calculation
- Precision of  $\mathcal{O}(0,1\%)$  over large mass range

#### Time required: $\blacktriangleright$ HATHOR: $\sim$ 1 hour

### • MCFM: $\sim 1 \, { m week}$

# Consistency Check



Time required:  $\blacktriangleright$  HATHOR:  $\sim$  1 hour

• MCFM:  $\sim 1 \text{ week}$ 

Thomas Kintscher

Single Top-Quark Production with HATHOR

## Outline

#### Introduction

The Top Quark Calculating Hadronic Cross Sections

#### Extraction of Partonic Cross Sections

Method 1: Modification of PDFs Method 2: Exact Extraction Implementation in HATHOR Consistency Check

#### Practical Studies on the Production of Single Top-Quarks

### Summary

## Hadronic Cross Section: t-channel



Different orders of perturbation series in t-channel

Thomas Kintscher

Single Top-Quark Production with HATHOR



- $\blacktriangleright$  Time consuming:  $\sim$  100 error PDFs
- $\blacktriangleright$  Errors from varying PDF fit parameters and  $lpha_{
  m s}$
- Error band does not always cover differences



- PDF uncertainties in NLO (t-channel)
- Time consuming:  $\sim$  100 error PDFs
- $\blacktriangleright$  Errors from varying PDF fit parameters and  $lpha_{
  m s}$
- Error band does not always cover differences



- Time consuming:  $\sim 100$  error PDFs
- Errors from varying PDF fit parameters and α<sub>s</sub>
- Error band does not always cover differences



- PDF uncertainties in NLO (t-channel)
- $\blacktriangleright$  Time consuming:  $\sim$  100 error PDFs
- $\blacktriangleright$  Errors from varying PDF fit parameters and  $lpha_{
  m s}$
- Error band does not always cover differences

# Scale Dependence of the Cross Section



- Scale dependence in the *t*-channel (exact calculation by S. Mölbitz)
- Cross section normalized to natural scale ( $\mu=m_{
  m t}$ )
- Dependences in higher orders considerably reduced



# Outline

#### Introduction

The Top Quark Calculating Hadronic Cross Sections

#### Extraction of Partonic Cross Sections

Method 1: Modification of PDFs Method 2: Exact Extraction Implementation in HATHOR Consistency Check

Practical Studies on the Production of Single Top-Quarks

### Summary



- Implemented two methods
- Consistency checks using tt production
- Applied to production of single top-quarks in NLO

Implementation in HATHOR:

- ✓ Reached precision of  $\leq O(0.1\%)$
- ✓ Much better performance than e.g. MCFM
- Exact scale dependence in NLO und NNLO

Demonstrated abilities of the implementation:

- ✓ Study of systematic uncertainties (PDFs, scales, CKM, ...)
- ✓ Possibility to produce plots in O(1 h)
- Application to top-quark mass measurement

- ✓ HATHOR 2.0 now publically available
- Preprint online (arXiv:1406.4403), publication in progress



- Implemented two methods
- Consistency checks using tt production
- ✓ Applied to production of single top-quarks in NLO

#### Implementation in HATHOR:

- ✓ Reached precision of  $\leq O(0.1\%)$
- ✓ Much better performance than e.g. MCFM
- Exact scale dependence in NLO und NNLO

#### Demonstrated abilities of the implementation:

- ✓ Study of systematic uncertainties (PDFs, scales, CKM, ...)
- ✓ Possibility to produce plots in O(1 h)
- Application to top-quark mass measurement

- ✓ HATHOR 2.0 now publically available
- Preprint online (arXiv:1406.4403), publication in progress



- Implemented two methods
- ✓ Consistency checks using tt̄ production
- ✓ Applied to production of single top-quarks in NLO

### Implementation in HATHOR:

- ✓ Reached precision of  $\leq O(0.1\%)$
- ✓ Much better performance than e.g. MCFM
- Exact scale dependence in NLO und NNLO

### Demonstrated abilities of the implementation:

- ✓ Study of systematic uncertainties (PDFs, scales, CKM, ....)
- ✓ Possibility to produce plots in O(1 h)
- $\checkmark$  Application to top-quark mass measurement

- ✓ HATHOR 2.0 now publically available
- Preprint online (arXiv:1406.4403), publication in progress



- Implemented two methods
- Consistency checks using tt production
- ✓ Applied to production of single top-quarks in NLO

### Implementation in HATHOR:

- ✓ Reached precision of  $\leq O(0.1\%)$
- ✓ Much better performance than e.g. MCFM
- Exact scale dependence in NLO und NNLO

### Demonstrated abilities of the implementation:

- ✓ Study of systematic uncertainties (PDFs, scales, CKM, ....)
- ✓ Possibility to produce plots in O(1 h)
- ✓ Application to top-quark mass measurement

- ✓ HATHOR 2.0 now publically available
- Preprint online (arXiv:1406.4403), publication in progress

Thank you for your attention!

### Backup

Backup

Thomas Kintscher
# Scale Dependence of the Cross Section



- Scale dependence in the s-channel (exact calculation by S. Mölbitz)
- Cross section normalized to natural scale ( $\mu = m_{\rm t}$ )
- Underlines necessity of higher-order calculations

W

# Determination of the Top-Quark Mass



- Determining the top-quark mass from cross sections in NLO
- Correlations neglected
- Highest sensitivity in s-channel
- Lowest sensitivity in t-channel

### Implementation of Scale Dependences

Expand partonic cross section:

$$\hat{\sigma} = \alpha_{\rm s}^k \hat{\sigma}^{\rm LO} + \alpha_{\rm s}^{k+1} \hat{\sigma}^{\rm NLO} + \dots$$

• Extraction of  $\hat{\sigma}^{\sf NLO}$  at a scale  $\mu_{\sf F} = \mu_{\sf R} = m_{\sf t}$ 

Extension to arbitrary scales:

$$\hat{\sigma}^{\mathsf{NLO}} = \boldsymbol{\hat{\sigma}}^{(\mathbf{10})} + \log\left(\frac{\mu_{\mathsf{F}}^2}{m_{\mathsf{t}}^2}\right) \hat{\sigma}^{(11)} + k\beta_0 \log\left(\frac{\mu_{\mathsf{F}}^2}{\mu_{\mathsf{R}}^2}\right) \hat{\sigma}^{\mathsf{LO}}$$

- Implement  $\hat{\sigma}^{(10)}$  using extracted cross sections
- Calculation of  $\hat{\sigma}^{(11)}$  in master thesis of S. Mölbitz
- Allows variation of  $\alpha_s$  and scales

# Scale Dependence of the Cross Section



- Scale dependence in *t*-channel (exact calculation by S. Mölbitz)
- Very small  $\mu_{\mathsf{R}}$  dependence
- Dependences in NNLO considerably reduced



# Impact of PDFs

- PDF uncertainties in all three channels in NLO
- Time consuming: ~ 100 error PDFs
- Errors from varying PDF fit parameters and α<sub>s</sub>
- Error band does not always cover differences



# Impact of PDFs

- PDF uncertainties in all three channels in approx. NLO
- Time consuming: ~ 100 error PDFs
- Errors from varying PDF fit parameters and α<sub>s</sub>
- Error band covers differences better than in NLO

# MCFM-Integration

$$\begin{aligned} \sigma_{had}(S) &= \sum_{ij} \iint_{0}^{1} dx_{1} dx_{2} \left\{ \phi_{i,h_{1}}(x_{1})\phi_{j,h_{2}}(x_{2}) \ \hat{\sigma}_{ij}(\hat{s}) \\ &+ \int_{x_{1}}^{1} \frac{dz}{z} \ \phi_{i,h_{1}}(\frac{x_{1}}{z}) \ \phi_{j,h_{2}}(x_{2}) \ \hat{\sigma}_{ij}^{(z)}(\hat{s}) \\ &+ \int_{x_{2}}^{1} \frac{dz}{z} \ \phi_{i,h_{1}}(x_{1})\phi_{j,h_{2}}(\frac{x_{2}}{z}) \ \hat{\sigma}_{ij}^{(z)}(\hat{s}) \right\} \end{aligned}$$

# MCFM-Integration

$$\sigma_{\mathsf{had}}(S) = \sum_{ij} \iint_{0}^{1} dx_{1} dx_{2} \phi_{i,\mathsf{h}_{1}}(x_{1}) \phi_{j,\mathsf{h}_{2}}(x_{2}) \left\{ \hat{\sigma}_{ij}(\hat{s}) + \int_{0}^{1} dz \left[ \hat{\sigma}_{ij}^{(z)}((z \, x_{1}) x_{2} S) + \hat{\sigma}_{ij}^{(z)}(x_{1}(z \, x_{2}) S) \right] \right\}$$
$$= \sum_{ij} \iint_{0}^{1} dx_{1} dx_{2} \phi_{i,\mathsf{h}_{1}}(x_{1}) \phi_{j,\mathsf{h}_{2}}(x_{2}) \left\{ \hat{\sigma}_{ij}(\hat{s}) + 2 \int_{0}^{1} dz \ \hat{\sigma}_{ij}^{(z)}((z \, x_{1} x_{2} S)) \right\}$$

# $\mathsf{MCFM}\text{-}\mathsf{Integration}$

$$\hat{\sigma}_{ij}(\hat{s}) = \hat{\sigma}_{ij}(\hat{s}) + 2\int_{0}^{1} \mathrm{d}z \ \hat{\sigma}_{ij}^{(z)}(z\hat{s})$$

Thomas Kintscher

# Hadronischer Wirkungsquerschnitt: t-Kanal



Verschiedene Ordnungen der Störungsreihe im t-Kanal

# Hadronischer Wirkungsquerschnitt: s-Kanal



Verschiedene Ordnungen der Störungsreihe im s-Kanal

# Hadronischer Wirkungsquerschnitt: Wt-Produktion



Verschiedene Ordnungen der Störungsreihe für tW-Produktion

# Skalenabhängigkeit des Wirkungsquerschnitts



# Skalenabhängigkeit des Wirkungsquerschnitts



# Skalenabhängigkeit des Wirkungsquerschnitts



## Renormierungsskalenabhängigkeit

Wirkungsquerschnitt in Potenzen von α<sub>s</sub>:

$$\sigma = \alpha_{\mathsf{s}}^{k} \sigma_{\mathsf{0}} + \alpha_{\mathsf{s}}^{k+1} \sigma_{\mathsf{1}}(\mu_{\mathsf{R}}) + \alpha_{\mathsf{s}}^{k+2} \sigma_{\mathsf{2}}(\mu_{\mathsf{R}}) + \mathcal{O}(\alpha_{\mathsf{s}}^{k+3})$$

β-Funktion der QCD:

$$\beta(\alpha_{\rm s}) = \frac{\partial \alpha_{\rm s}}{\partial \log \mu_{\rm R}^2} = \mu_{\rm R}^2 \frac{\partial \alpha_{\rm s}}{\partial \mu_{\rm R}^2} = -(4\pi)\beta_0 \alpha_{\rm s}^2 - (4\pi)^2 \beta_1 \alpha_{\rm s}^3 - \mathcal{O}(\alpha_{\rm s}^4)$$

• Ableitung von  $\sigma$  nach  $\mu_{R}$ :

$$\frac{\partial \sigma}{\partial \log \mu_{\mathsf{R}}^{2}} = k \alpha_{\mathsf{s}}^{k-1} \beta(\alpha_{\mathsf{s}}) \sigma_{\mathsf{0}} + (k+1) \alpha_{\mathsf{s}}^{k} \beta(\alpha_{\mathsf{s}}) \sigma_{\mathsf{1}}(\mu_{\mathsf{R}}) + \alpha_{\mathsf{s}}^{k+1} \frac{\partial \sigma_{\mathsf{1}}(\mu_{\mathsf{R}})}{\partial \log \mu_{\mathsf{R}}^{2}} + (k+2) \alpha_{\mathsf{s}}^{k+1} \beta(\alpha_{\mathsf{s}}) \sigma_{\mathsf{2}}(\mu_{\mathsf{R}}) + \alpha_{\mathsf{s}}^{k+2} \frac{\partial \sigma_{\mathsf{2}}(\mu_{\mathsf{R}})}{\partial \log \mu_{\mathsf{R}}^{2}} + \mathcal{O}(\alpha_{\mathsf{s}}^{k+3})$$

•  $\sigma$  soll nicht von  $\mu_{\mathsf{R}}$  abhängen:

$$\mathbf{0} = \alpha_{\rm s}^{k+1} \left( -4\pi k \beta_0 \sigma_0 + \frac{\partial \sigma_1(\mu_{\rm R})}{\partial \log \mu_{\rm R}^2} \right)$$

Thomas Kintscher

# Renormierungsskalenabhängigkeit

•  $\sigma$  soll nicht von  $\mu_{\mathsf{R}}$  abhängen:

$$\mathbf{0} = \alpha_{\mathsf{s}}^{k+1} \left( -4\pi k \beta_0 \sigma_0 + \frac{\partial \sigma_1(\mu_{\mathsf{R}})}{\partial \log \mu_{\mathsf{R}}^2} \right)$$

Auflösen nach σ<sub>1</sub>:

$$egin{aligned} \sigma_1(\mu_{\mathsf{R}}) &= -4\pi k eta_0 \sigma_0 \log \mu_{\mathsf{R}}^2 + ilde{\sigma}_1 \ &= -4\pi k eta_0 \sigma_0 \log rac{\mu_{\mathsf{R}}^2}{\mu_{\mathsf{F}}^2} + ilde{\sigma}_1(\mu_{\mathsf{F}}^2) \end{aligned}$$

- $\mu_R$  Abhängigkeit der NLO-Korrektur ist proportional zu  $\sigma_0$
- Integrationskonstante ist μ<sub>R</sub>-unabhängiger Teil (aber noch ~ μ<sub>F</sub>)

# Faktorisierungsskalenabhängigkeit

DGLAP-Gleichung (2n<sub>f</sub> + 1 Dimensionen):

$$\frac{\partial}{\partial \log \mu_{\mathsf{R}}^2} \begin{pmatrix} q_i(x, \mu_{\mathsf{F}}) \\ g(x, \mu_{\mathsf{F}}) \end{pmatrix} = 4\pi\alpha_{\mathsf{s}} \sum_{q_i, \bar{q}_j} \begin{pmatrix} P_{q_i, q_j} & P_{q_i, g} \\ P_{g, q_j} & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} q_i \\ g \end{pmatrix} (x)$$

- Entwickle P<sub>ij</sub> in Potenzen von α<sub>s</sub>
- Gleichungen müssen für alle PDF gelten
- Verlange f
  ür beide Skalen

$$\frac{\partial \sigma}{\partial \log \mu^2} = 0$$

### NLO-Beiträge im t-Kanal



$$\hat{\sigma} = \alpha_{\mathsf{s}}^{k} \, \hat{\sigma}^{\mathsf{LO}} + \alpha_{\mathsf{s}}^{k+1} \, \hat{\sigma}^{\mathsf{NLO}} + \dots$$

NLO-Beiträge im s-Kanal



$$\hat{\sigma} = \alpha_{\mathsf{s}}^{k} \, \hat{\sigma}^{\mathsf{LO}} + \alpha_{\mathsf{s}}^{k+1} \, \hat{\sigma}^{\mathsf{NLO}} + \dots$$

### NLO-Beiträge zur Wt-Produktion



Thomas Kintscher

### LO+NLO-Beiträge im t-Kanal



LO+NLO-Beiträge im s-Kanal



Thomas Kintscher

### LO+NLO-Beiträge zur Wt-Produktion



$$\hat{\sigma} = \alpha_{\rm s}^k \, \hat{\sigma}^{\rm LO} + \alpha_{\rm s}^{k+1} \, \hat{\sigma}^{\rm NLO} + \dots$$

## HATHOR für Top-Paarerzeugung



# $\alpha_{s}$ -Abhängigkeit im *t*-Kanal



# $\alpha_{s}$ -Abhängigkeit im s-Kanal



### $\alpha_{s}$ -Abhängigkeit der Wt-Produktion



# Skalenabhängigkeit im t-Kanal



# Skalenabhängigkeit im s-Kanal



Thomas Kintscher

# Skalenabhängigkeit der Wt-Produktion



# Massenabhängigkeit (part. WQ)



# Zugänglicher Bereich in $x_{1,2}$



# Massenabhängigkeit



# CKM-Matrixelementabhängigkeit



### Bottom-PDF




Thomas Kintscher

## Single Top-Quark Production with HATHOR



## Thomas Kintscher

## Single Top-Quark Production with HATHOR

## NLO-PDF (aNNLO $\hat{\sigma}$ )