The CRESST-II Experiment Searching for new Detector Candidates

Büsra Cebeci

Physikalisches Institut Universität Tübingen

Astroteilchenschule, 14.Okt 2014

Contents

Motivation

2 CRESST-II Experiment

- Experimental Setup
- Detector Module
- Transition-Edge-Sensor
- CaWO₄
- CRESST-II Results

Oetector Candidate - LiF

- Lithium-Fluoride Crystal
- Experimental Setup
- Data Analysis
- Results

Summary and Outlook

Motivation

(C.Tenzer, IAAT)

(physics.stackexchange.com)

CRESST-II Experiment

(Ings.infn.it)

- Cryogenic Rare Event Search with Superconducting Thermometers
- Located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy
- Direct detection via elastic scattering off nuclei with cryogenic detectors
- Suitable for detection of low mass WIMPs

CRESST-II Experimental Setup

	(cresst.de)		
Büsra Cebeci (PIT)	CRESST-II	Astroteilchenschule, 14.Okt 2014	5

CRESST-II Experimental Setup

Why do we need so many layers to suppress the background?

Expected Rate

$$R = N \frac{\rho_{\chi}}{m_{\chi}} < v > \sigma_{\chi} A^2$$

N: Number of target atoms $\frac{\rho_{\chi}}{m_{\chi}} = 3 l^{-1}$: Particle density $< v >= 10^5 s^{-1} cm^{-2}$: Dark Matter flux $\sigma_{\chi} A^2$: coherrent scattering with $\sigma_{\chi} = 10^{-36} cm^2$

Fact

Less than 1 event per kg and day!

CRESST-II Detector Module

(Angloher et al., arXiv:1109.0702)

- Simultaneous measurement of heat/phonon and scintillation signal
- Phonon Detector: CaWO₄
- Operated at mK temperatures
- Light Detector: sapphire wafer silicon layer on one side (SOS)
- Scintillation permits rejection of potentially dangerous background

Transition-Edge-Sensor

- Thin W-film evaporated onto the crystal
- Superconducting phase transition
- Temperature change gives significant variation of the TES resistance
- Relaxes back to equilibrium via weak thermal coupling to heat bath

(R.Strauss, MPP)

CRESST-II CaWO₄

(R.Strauss, MPP)

- *d* = *h* = 40 mm
- Multi-element target material
- High light output
- Heavy nucleus W which gives large factor $\propto A^2$
- Sensitive to the largest possible range of WIMP masses

CRESST-II Detector Module

(Angloher et al., arXiv:1109.0702)

CRESST-II Results

Old:

New:

(Angloher et al., arXiv:1109.0702)

(Angloher et al., arXiv:1407.3146)

Lithium-Fluoride Crystal

Why Lithium-Fluoride?

- Light output not really measured at low temperatures
- Possible use for measuring neutron rates to have better background discrimination
- Spin-dependent cross-section analysis

Experimental Setup

Data Analysis

- Multiple Photon Counting Coincidence (MPCC) Technique (DOI: 10.1016/j.nima.2005.07.011)
- 1.Step: delete pulses from trace to get baseline
- 2.Step: count pulses with a given threshold
- 3.Step: delete traces which contain early pulses

Results of the Light Yield

Büsra Cebeci (PIT)

Summary and Outlook

Summary

- Detection of WIMPs with multi-element target with large possible range of WIMP masses operated at mK detectors
- Target material can be exchanged
- \bullet Very low light output of LiF \rightarrow not a possible detector candidate

Outlook

- Search for other possible detector candidates
- Change experimental setup and use n-scattering facility to calibrate new detectors

Backup

(Angloher et al., arXiv:1407.3146)

Backup

(Strauss et al.)