# Analysis methods for variable sources and application to H.E.S.S. data

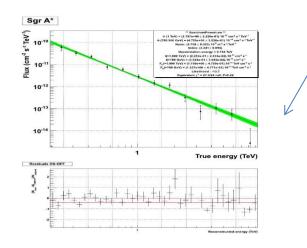
Sabrina Bernhard
Institute for Astro- and Particle Physics
University of Innsbruck

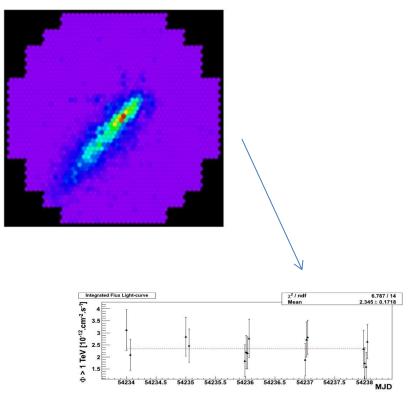




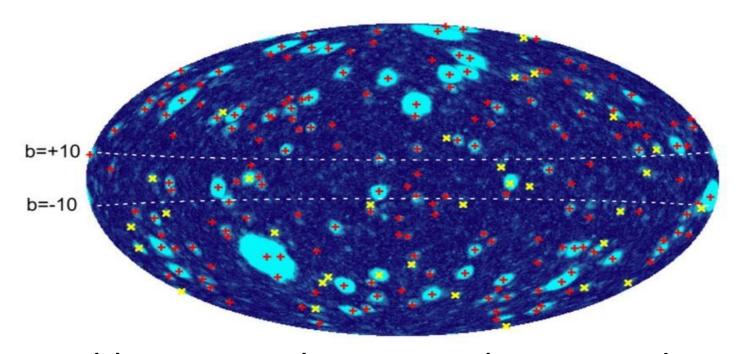
## The H.E.S.S. Telescopes High Energy Stereoscopic System

- System of 5 Imaging Atmospheric Cherenkov Telescopes (IACTs)
- Located on Farm Göllschau, Khoma Highland in Namibia
- 4 Telescopes with 12m mirror diameter arranged in a rectangle
- 1 Telescope with 28m mirror diameter in the middle
- Designed to detect cosmic gamma rays in the energy range of 30GeV to 100TeV


#### Measurements with H.E.S.S.


 Typical Cherekov signatures give us information about energy and direction of the

primary particle


➤ Energy spectrum

**≻**Lightcurve





#### **Transient Sources**



### Variable sources shown in Galactic coordinates during 47 month of Fermi observations

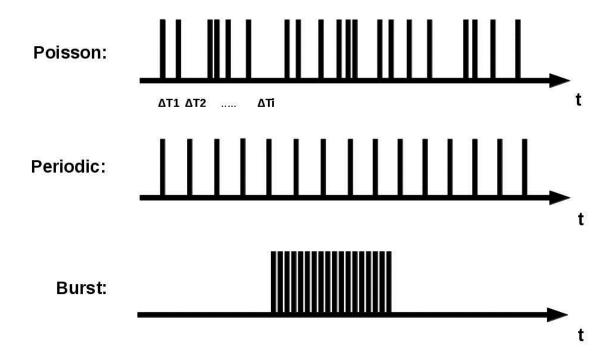
(The Fermi All-Sky Variability Analysis: A List of flaring Gamma-ray sources and the search for Transients in our galaxy,

M. Ackermann, et al. 2013

arXiv:1304.6083)

#### **Investigation of Transient Sources**

- Binaries, Gamma Ray Bursts, Crab Flares....
- Might have occurred without being detected
  - Besides a precise hardware performance a sensitive analysis method is needed
- Development and implementation of the Transient Analysis in the H.E.S.S. Model++ Analysis Software


(François Brun – Rechercher de sources ténues ou transitoires dans les régions centrales de la Galaxie avec H.E.S.S., Thèse de Doctorat, Sept. 2011)

#### What do we analyse?

- Taking data from a transient source, for example PKS 2155-304, one of the brightest active galaxies in the sky (flares in 2006&2007)
- Performing the basic analysis chain: background subtraction, energy cuts.....
- To use the Transient Analysis we are basically interested in the arrival times of gamma events an the time intervalls between two events

#### ExpTest

(A fast unbinned test on event clustering Poisson processes, J.Prahl, 1999, arXiv:astro-ph/9909399)



#### **ExpTest**

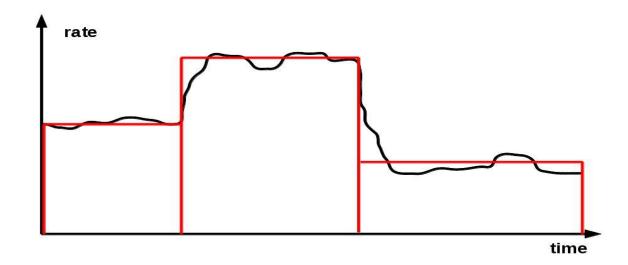
- Consideration of the time intervals between 2 gamma events  $\Delta Ti$
- Derivation of an estimater that compares the time intervals to their mean:

$$M_N = \frac{1}{N} \sum_{\Delta T i \leq C^*} (1 - \frac{\Delta T i}{C^*}) \text{ with } C^* = \frac{1}{N} \sum \Delta T i$$

 $M_N \rightarrow \frac{1}{e}$  for Poisson distribution

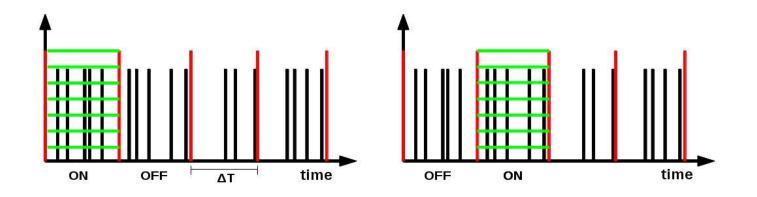
 $M_N = 0$  for Periodic distribution

 $M_N \rightarrow 1$  for Burst


#### Running ExpTest

- ExpTest is more sensitive for a smaller number of events
  - ➤ Running ExpTest:
  - Performance of the ExpTest in a **small time** window of a fixed size, running over the whole data set
  - ➤ Obtaining the maximal significance from the individual windows

#### **Bayesian Blocks**

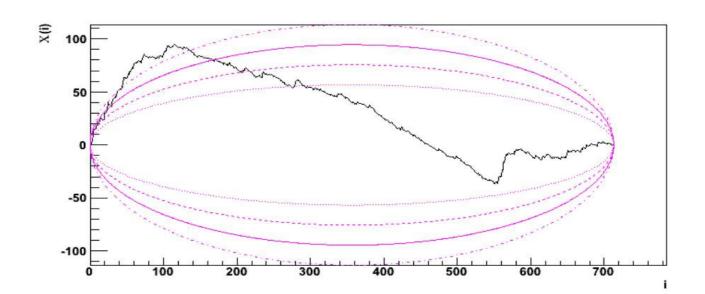

(Bayesian Blocks, A New Method to Analyze Structure in Photon Counting Data, D.Scargle, 1997, arXiv:astro-ph/9711233)

- Estimation of a "Block Distribution" that fits best to the data
- Size of the blocks must be choosen carefully



#### ON / OFF Test

- ON region with a defined size is shifted through the whole data set
- Significance calculation with Li&Ma Method for each ON position




(T.-P. Li and Y.-Q. Ma. "Analysis methods for results in gamma-ray astronomy". In: ApJ 272, Sept. 1983)

#### **Cumulative Sum Test**


$$\chi_i = \sum_{k=1}^i (\Delta T_k - < \Delta T >)$$

Creation of a plot  $\chi_i$  vs. i (black line), including the lines, marking  $3\sigma$ ,  $4\sigma$ ,  $5\sigma$  an  $6\sigma$  (purple lines):



#### Summary an Outlook

- Transient Tests are implemeted and working in the Model++ Paris Analysis of H.E.S.S.
- Tests applied to data of the PKS2155-304 flare in 2006 and 2007 gave reliable results
- Future work: Sensitivity studies, quantifying test statistics, applications to future measurements
- Principle search for transient
- Phenomena

