The role of astrometry in the study of exoplanets

Michael Perryman

(Erlangen, 8-10 October 2014)

"It is almost certain that there is some form of vegetation on Mars"

Spencer Jones, 1940

Astrometry in the context of exoplanet detection/characterisation

The 'tragic history' of astrometric planet detection

- Jacob (1855) 70 Oph: orbital anomalies made it 'highly probable' that there was a 'planetary body'; supported by See (1895); orbit shown as unstable (Moulton 1899)
- Holmberg (1938): from parallax residuals... `Proxima Centauri probably has a companion' of a few Jupiter masses
- Reuyl & Holmberg (1943) 70 Oph: planetary companion of $\sim 10 M_J$
- Strand (1943) 61 Cyg: companion of $\sim 16 M_J$
- lengthy disputes about planets around Barnard's star: van der Kamp (1963, 1982)
- similarly for Lalande 21185 (e.g. Lippincott 1960)
- Pravdo & Shaklan (2009) vB10 with Palomar-STEPS, later disproved (Bean 2010)
- Muterspaugh+ (2010) HD~176051, only current detection: 'may represent either the first such companion detected, or the latest in the tragic history of this challenging approach.'
- early discussions of space astrometry/Hipparcos exoplanet capabilities:
 - Couteau & Pecker (1964), Gliese (1982)

The accelerating pace of discovery...

Distances and space motions

Distances and motions

Examples:

- distances provide stellar parameters
 - e.g. transit planet diameters ~ stellar diameters
- verification of seismology models for M, R
- proper motions characterise population(s)

e.g. HIP 13044 low-metallicity Galactic halo stream (Helmi+1999, Setiawan+2010)

• Galactic birthplace based on metallicity-age

e.g. Wielen (1996) inferred that the Sun's birthplace was at R=6.6 kpc

Hipparcos distances to exoplanet host stars

100 brightest radial velocity host stars (end 2010) (versus RA, independent of dec)

Hipparcos parallaxes

ground-based: van Altena et al (1995) (unknown assigned $\pi = 10\pm9$ mas)

Gaia distances to exoplanet host stars

Transit host stars only

1129 transiting planets
 (2014 May 1)

There are: 582 distinct host stars 188 Hipparcos distances 366 Kepler from K-M_K median ~670pc 28 placed at 1 kpc Principles of Gaia astrometric detections

Discovery from 'astrometric signature'

Unseen planets perturb the photocentre, which moves with respect to the barycentre (as for Doppler measures)

and provides *M* directly (not simply *M* sin *i*)

Astrometric signature

Direct access to planet mass

Keplerian orbit in 3d determined by 7 parameters: a, e: specify size and shape P: related to a and masses (Kepler's 3rd law) t_p : the position along orbit at some reference time i, Ω, ω : represent projections wrt observer

Radial velocity measures:

- cannot determine Ω ,
- only determine the combination a sin i
- only determine $M_{\rm P} \sin i$ if M_* can be estimated
- cannot determine Δi for multiple planets

All 7 parameters <u>are</u> determinable by astrometry ($\pm 180^{\circ}$ on Ω). Conceptually:

- xy(t) yields max and min angular rates, and hence the line of apsides (major axis)
- then appeal to Kepler's third law fixes the orbit inclination

Coplanarity of orbits and transit geometry

Importance of Δi

- $\Delta i \sim 0$ in the solar system
- various evidence that this is not necessarily the rule in exoplanets:

(1) long-term dynamical stability (via numerical integrations) \Rightarrow some cannot be coplanar

(2) Rossiter-McLaughlin effect used to measure the (sky projection) of the orbital and stellar rotation axes indicates that many orbits are misaligned wrt stellar equator (some retrograde)

(3) models of formation and evolution admit the possibilities of: (a) asymmetric protoplanetary infall; (b) gravitational scattering during the giant impact stage of protoplanetary collisions; (c) Kozai resonance/migration in which L_z is conserved, and hence *i* and *e* can be 'traded' (explains high e in triple systems, and hot Jupiters when combined with tidal friction)

Number of Gaia exoplanet detections

(Perryman, Hartman, Bakos, Lindegren 2014, ApJ submitted)

- based on:
 - I. latest accuracies for Gaia: along-scan error versus magnitude

(but with uncertainties on attitude jitter, bright star performance, etc)

- 2. Galaxy population synthesis model: TRILEGAL (Girardi et al 2012)
- exoplanet occurrence frequencies versus stellar type, mass, etc
 (but still highly simplified for binary stars, multiple massive planets, etc)
- 4. detailed observational model (field-of-view crossings) versus sky position
- 5. planet detectability dependent on number and distribution of field-of-view crossings (not just the S/N of a single crossing)

Gaia sky scanning

	G	z	σ_η	$\sigma_{ m fov}$	$\sigma_{ m pos}$
	(mag)		(μas)	(μas)	$(\mu { m as})$
	6	0.063	57.8	34.2	7.7
I. Gaia accuracy	7	0.063	57.8	34.2	7.7
	8	0.063	57.8	34.2	7.7
z: relative number of photons	9	0.063	57.8	34.2	7.7
σ_{η} = centroiding accuracy per CCD	10	0.063	57.8	34.2	7.7
σ_{FOV} = along-scan accuracy per FOV crossing	11	0.063	57.8	34.2	7.7
$\sigma_{\text{pos}} = \text{sky-averaged positional error}$	12	0.063	57.8	34.2	7.7
	13	0.158	91.7	41.6	9.4
	14	0.398	145.4	56.1	12.7
	15	1.000	230.9	82.0	18.5
	16	2.512	367.5	125.7	28.4
	17	6.310	588.9	198.3	44.8

18

19

20 _**19** 15.849

39.811

100.000

958.1

1612.8

2898.3

320.6

538.4

966.5

72.5

121.7

218.4

2. Galaxy model

- used the population synthesis model TRILEGAL:
 - components: halo, thick/thin disks, bulge, disk extinction layer
 - theoretical stellar LF derived from evolutionary tracks (as a function of absolute magnitude, position, and photometric passband) using IMF, SFR, and AMR
 - can retain stellar properties (mass, age, metallicity, Teff, etc)
 - we interpolated I deg fields in 10 deg steps of long/latitude
 - magnitude limit: r < 17.5 mag
 - total number of stars (including binaries): 260 million

3. Assumed planet occurrences

- binary stars: secondaries ignored
- host star mass/metallicity: Johnson et al (2010)
- planet mass and period:

Class	$R_{ m p}$	$M_{ m p}$	Р	f	Reference
	(R_\oplus)	$(M_{\rm J})$			
Earth	0.8 - 1.25	0.002 - 0.007	$0.8-85{\rm d}$	0.1840	Fressin et al. 2013
super Earth	1.25 - 2	0.007 - 0.018	$0.8 145 \mathrm{d}$	0.2960	Fressin et al. 2013
small Neptune	2-4	0.018 - 0.033	$0.8245\mathrm{d}$	0.3090	Fressin et al. 2013
large Neptune	4-6	0.033 - 0.077	$0.8 - 418 \mathrm{d}$	0.0318	Fressin et al. 2013
(giant	6 - 22	0.077 - 1.274	$0.8 - 418 \mathrm{d}$	(0.0524)	Fressin et al. 2013^a)
'restricted' giant		0.077 - 0.3	$0.8 - 418 \mathrm{d}$	0.0114	Fressin et al. 2013^a
giant		0.1 - 0.3	$418\mathrm{d}{-10\mathrm{yr}}$	0.0388	$\operatorname{Johnson-Cumming}^b$
giant		0.3 - 15	$2\mathrm{d}{-10\mathrm{yr}}$	0.1339	$\operatorname{Johnson-Cumming}^b$

- occurrence around low-mass stars: Montet et al (2014)
- eccentricities: Beta distribution (Kipping 2013)
- low-mass planets: Fressin et al (2013)
- total numbers: 254 million planets around 260 million stars

Detections vs S/N per field-of-view crossing

$\frac{\Delta d}{(\mathrm{pc})}$	N_{\star}^{C08}	$N_{\rm det}^{ m C08}$	N_{\star}	$N_{\rm det}$ $\alpha > 0.5$	$N_{ m tran}$ 5 $\sigma_{ m fov}$	$\begin{array}{ll} N_{\rm det} & N_{\rm tran} \\ \alpha > 1 \sigma_{\rm fov} \end{array}$		$egin{array}{cc} N_{ m det} & N_{ m tran} \ lpha > 2\sigma_{ m fov} \end{array}$		$N_{ m det} N_{ m tran}$ $lpha > 3 \sigma_{ m fov}$		$N_{\rm det} N_{\rm tran}$ $\alpha > 6 \sigma_{\rm fov}$	
0- 50	10 000	1400	39000	1508	5.4	897	2.8	512	1.4	359	0.9	186	0.4
50 - 100	51000	2500	203000	5914	20.6	3344	9.9	1789	4.4	1195	2.6	502	0.9
100 - 150	114000	2600	476000	8598	30.1	4877	14.3	2435	5.8	1466	3.0	452	0.7
150-200	295000	2150	889 000	11737	37.2	6309	16.7	2851	6.2	1589	3.1	289	0.4
200 - 250	_	_	859000	8976	26.9	4601	11.5	1860	3.8	862	1.5	51	0.0
250 - 300		_	1298000	11734	33.8	5677	13.5	2026	4.0	832	1.5	12	0.0
300-350		_	1793000	14972	42.2	6857	15.9	2008	3.8	636	1.0	_	_
350 - 400		_	1775000	13091	35.7	5464	12.4	1308	2.4	264	0.4	_	_
400 - 450		_	1411000	9019	24.3	3394	7.5	642	1.2	63	0.1	_	_
450 - 500		_	1718000	10439	27.3	3691	8.0	533	1.0	25	0.0	_	_
500-600		_	4267000	21172	53.8	6411	13.9	572	1.1	8	0.0	_	_
600-700		_	5732000	21286	53.7	4984	10.9	127	0.3	_	—	_	_
700-800		_	5462000	15434	37.9	2678	5.9	5	0.0	_	_	_	_
800-1400	_	_	36500000	35219	88.0	2083	4.7	_	-	_	_	_	_
Total	470 000	8750	62 000 000	189099	517	61267	148	16668	35	7299	14	1492	2

Properties of the detected planets

Detectability in terms of $\Delta \chi^2$

Our final estimates are then:

	$\Delta \chi^2$	$\begin{array}{cc} N_{\rm det} & N_{\rm tran} \\ \\ \alpha > 0.5 \sigma_{\rm fov} \end{array}$		$\begin{array}{cc} N_{\rm det} & N_{\rm tran} \\ \\ \alpha > 1 \sigma_{\rm fov} \end{array}$		$\begin{array}{cc} N_{\rm det} & N_{\rm tran} \\ \\ \alpha > 2 \sigma_{\rm fov} \end{array}$		$N_{ m det} N_{ m tran}$ $lpha > 3 \sigma_{ m fov}$		$N_{\rm det} N_{\rm tran}$ $\alpha > 6 \sigma_{\rm fov}$	
nominal 5-year mission	> 30	27505	42	26038	42	12893	25	6541	12	1475	2
"	> 50	14806	25	14755	25	10297	20	5762	10	1444	2
"	>100	6488	11	6488	11	6116	11	4393	8	1353	2
extended 10-year mission	> 30	90751	135	58674	117	16666	35	7299	14	1492	2
"	> 50	53015	82	47630	80	16648	35	7299	14	1492	2
11	>100	25958	39	25882	39	15836	30	7285	14	1492	2

...estimating detectability from the S/N per field-of-view crossing

- is a simplistic approach not taking into account:
 - the number of observations
 - the distribution of projection geometries on the sky
 - the orbit period, etc

How many of these are transiting?

- probability given by the solid angle
- for circular orbits (e.g. Borucki & Summers 1984):

$$p = \frac{R_{\star}}{a_{\rm p}} \simeq 0.005 \left(\frac{R_{\star}}{R_{\odot}}\right) \left(\frac{a_{\rm p}}{1 \text{ AU}}\right)^{-1}$$

• for eccentric orbits (.e.g Barnes 2007):

$$p = \left(\frac{R_{\star} + R_{\rm p}}{a_{\rm p}}\right) \left(\frac{1}{1 - e^2}\right)$$

There will be ~40 transiting planets

- periods: I-5 years, i.e. 'middle region' planets
- ~1-2 M_J , so (bright star) transits pronounced
- some may be in the Gaia photometry
- some may be in existing transit databases
- interesting for amateur/citizen science
- will allow characterisation of a type of planet poorly characterised by other means

Multiple (massive) planets

Astrometric motion for multiple planets...

(assuming orbits are co-planar)

The sun's motion guides us:

- Newton: 'since that centre of gravity is continually at rest, the Sun, according to the various positions of the planets, must continuously move every way, but will never recede far from that centre' (Cajori 1934)
- barycentre frequently extends beyond the solar disk
- periods when the Sun's motion is 'retrograde' with respect to the barycentre (~1990, 1811,1632)

Motion of host star around barycentre for multiple exoplanets

(assuming coplanarity)

Motion for multiple planets (cont.)

Astronomia Nova (1609) includes Kepler's hand drawing of the orbit of Mars viewed from Earth

DE MOTIB. STELLÆ MARTIS

...designated as 'mandala' (Sanskrit for circle) by Wolfram (2010)

Exoplanets and the solar dynamo

Now for something contentious...

- solar axial rotation is invoked in models of the solar cycle (e.g. turbulent dynamo operating in or below the convection envelope)
- precise nature of the dynamo, and details of associated solar activity (sun spot cycles, and the prolonged Maunder-type solar minima) are unexplained
- empirical investigations have long pointed to a link between the Sun's barycentric motion and various solar variability indices (e.g. Wolf, 1859; Brown, 1900; Schuster, 1911; Jose, 1965; Ferris, 1969), specifically:
 - the Wolf sun spot number counts (Wood & Wood, 1965)
 - climatic changes (Mörth & Schlamminger, 1979; Scafetta, 2010)
 - the 80-90-yr secular Gleissberg cycles (Landscheidt, 1981, 1999)
 - prolonged Maunder-type minima (Fairbridge & Shirley, 1987; Charvátová, 1990, 2000)
 - short-term variations in solar luminosity (Sperber et al., 1990)
 - sun spot extrema (Landscheidt, 1999)
 - the 2400-yr cycle seen in I4C tree-ring proxies (Charvátová, 2000)
 - hemispheric sun spot asymmetry (Juckett, 2000)
 - torsional oscillations in long-term sun spot clustering (Juckett, 2003)
 - violations of the Gnevishev–Ohl sun spot rule (Javaraiah, 2005)

Just one example...

Abreu et al (2012), A&A 548, 88 (ETH Zürich)

solar modulation potential over 9400 yr from ¹⁰Be and ¹⁴C

Proposed coupling mechanisms between the solar axial rotation and orbital revolution:

- Zaqarashvili (1997), Juckett (2000), contested by Shirley (2006)
- Abreu (2012): time-dependent torque exerted by the planets on a non-spherical tachocline
- Callebaut & de Jager (2012): effect considered as negligible

Exoplanets can arbitrate

(Perryman & Schulze-Hartung 2011)

- behaviour cited as correlated with the Sun's activity includes
 - changes in orbital angular momentum, dL/dt
 - intervals of negative orbital angular momentum
- these are common (but more extreme) in exoplanet systems
- HD 168443 and HD 74156 have dL/dt exceeding that of the Sun by more than 10⁵
- activity monitoring should therefore offer an independent test of the hypothetical link between:
 - the Sun's barycentric motion
 - and the many manifestations of solar activity

HD 168433

- two massive planets $(8-18M_J)$ at 0.3-3 AU, $e_1 \sim 0.5$
- most extreme negative L_z and largest dL/dt
- periodicity of ~58 days

Summary

- accurate distances:
 - calibration of host star parameters, including R for transiting
 - calibration of asteroseismology models
- accurate proper motions: Galactic dynamics and population
- multi-epoch high-accuracy photometry:
 - new transiting systems (several hundred?)
 - calibration of photometric jitter vs spectral type
- multi-epoch astrometry:
 - discovery of new (massive, long-period) planets (7,000-17,000)
 - co-planarity of systems: evolutionary models
 - position angle of planet transits (some multiple?)

End