Mass in Particle Physics Neutrino Masses

Thomas Mannel

Theoretische Physik I, Universität Siegen

Schule für Astroteilchenphysik 2014

Leptons in the Standard Model

イロト イポト イヨト イヨト

Introduction

Leptons still have an additional aspect of "mass"

- A possible right-handed neutrino does not have any quantum numbers in the SM
 - it carries no charge
 - it does not couple to W^{\pm} and Z
 - it only would come in to generate a (Dirac) mass
- this allow for another type of mass term: A Majorana mass

ヘロト ヘ戸ト ヘヨト ヘヨト

Leptons in the Standard Model

- If the neutrinos are massless:
 - Only left handed neutrinos couple
 - No flavor mixing in the lepton sector
- Recent evidence for neutrino mixing:
 - This requires a mass term
 - Mixing in the Lepton Sector
- It could be just a copy of the quark sector, but it may be different due to the quantum numbers of the leptons

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Multiplets and Quantum Numbers

• Left Handed Leptons: SU(2)_L Doublets

$$L_{1} = \begin{pmatrix} \nu_{e,L} \\ e_{L} \end{pmatrix} L_{2} = \begin{pmatrix} \nu_{\mu,L} \\ \mu_{L} \end{pmatrix} L_{3} = \begin{pmatrix} \nu_{\tau,L} \\ \tau_{L} \end{pmatrix}$$

• Right Handed Leptons: *SU*(2)_R Doublets

$$\ell_{1} = \begin{pmatrix} \nu_{e,R} \\ e_{R} \end{pmatrix} \ell_{2} = \begin{pmatrix} \nu_{\mu,R} \\ \mu_{R} \end{pmatrix} \ell_{3} = \begin{pmatrix} \nu_{\tau,R} \\ \tau_{R} \end{pmatrix}$$

• Charge and Hypercharge

$$Y = T_{3,R} + \frac{1}{2}(B - L) = T_{3,R} - \frac{1}{2}$$
 $q = T_{3,L} + Y$

• Y (and q) project the lower component: Right handed Neutrinos: No charge, no Hypercharge

Majorana Fermions

- A "neutral" fermion can have a Majorana mass
- Charged fermions ⇔ complex scalar fields
- Majorana fermion: "Real (= neutral) fermion"
- Definition of "complex conjugation" in this case: Charge Conjugation:

$$\psi \to \psi^{c} = C \bar{\psi}^{T} \quad C = i \gamma_{2} \gamma_{0} = \begin{pmatrix} 0 & -i \sigma_{2} \\ -i \sigma_{2} & 0 \end{pmatrix}$$

• Properties of C

$$-C = C^{-1} = C^T = C^{\dagger}$$

• Majorana fermion: $\psi_{Majorana} = \psi^{c}_{Majorana}$ (Just as $\phi^{*} = \phi$ for a real scalar field)

Majorana Mass Terms

- Mass term for a Majorana fermion: The charge conjugate of a right handed fermion is left handed.
- Possible mass term

$$\mathcal{L}_{MM}=-rac{1}{2}M\left(ar{
u}_{R}(
u_{R}^{c})_{L}+h.c.
ight)$$

- Only for fields without U(1) quantum numbers
- In the SM: only for the right handed neutrinos !
- Remarks:
 - The Majorana mass of the right handed neutrinos is NOT due to the Higgs mechanism.
 - Thus this majorana mass can be "large"
 - Natural explanation of the small neutrino masses: see-saw mechanism

See Saw Mechanism

- Simplification: One family: ν_L and ν_R
- Total Mass term: Dirac and Majorana mass

$$\mathcal{L}_{mass} = -m(ar{
u}_L
u_R + ar{
u}_R
u_L)
onumber \ -rac{1}{2}M(
u_R^T C
u_R + ar{
u}_R C ar{
u}_R^T)$$

We use

$$\overline{(\nu_R^c)}_L(\nu_L^c)_R = \overline{\nu}_L \overline{\nu}_R$$

and the properties of the C matrix ...

$$\mathcal{L}_{mass} = -rac{1}{2} \left(ar{
u}_L \ \overline{(
u_R^c)}_L
ight) \left(egin{array}{c} 0 & m \ m & M \end{array}
ight) \left(egin{array}{c} (
u_L^c)_R \
u_R \end{array}
ight) + h.c.$$

ヘロト 人間 とくほとく ほとう

 Diagonalization of the mass matrix:
 → Majorana mass eigenstates of the Neutrinos For *M* ≫ *m* we get

$$m_1 pprox rac{m^2}{M} \quad m_2 pprox M$$

- One very heavy, practically right handed neutrino
- One very light, practically left handed neutrino
- At energies small compared to M: Majorana mass term for the left handed neutrino

$$\mathcal{L}_{mass} = -rac{1}{2}rac{m^2}{M}\left(
u_L^T C
u_L + ar{
u_L} C ar{
u_L}^T
ight)$$

• Majorana mass is small if $M \gg m$

Right handed neutrinos in the Standard Model

- In case of three families: Neutrino Mixing
- Compact notation for the Leptons:

$$\mathcal{N}_{L/R} = \begin{bmatrix} \nu_{e,L/R} \\ \nu_{\mu,L/R} \\ \nu_{\tau,L/R} \end{bmatrix} \quad \mathcal{E}_{L/R} = \begin{bmatrix} \theta_{L/R} \\ \mu_{L/R} \\ \tau_{L/R} \end{bmatrix}$$

 Dirac masses are generated by the Higgs mechanism: (as for the quarks)

$$\mathcal{L}_{DM}^{N} = -\mathcal{N}_{L}m^{N}\mathcal{N}_{R} + h.c.$$

 $\mathcal{L}_{DM}^{E} = -\mathcal{E}_{L}m^{E}\mathcal{E}_{R} + h.c.$

m^N: Dirac mass matrix for the neutrinos
 m^E: (Dirac) mass matrix for *e*, μ, τ

• Right handed neutrinos \rightarrow Majorana mass term:

$$\mathcal{L}_{MM} = -rac{1}{2} \left(N_R^{\mathsf{T}} M C N_R + ar{N}_R M C ar{N}_R^{\mathsf{T}}
ight)$$

- M: (Symmetric) Majorana Mass Matrix
- This term is perfectly $SU(2)_L \otimes U(1)$ invariant
- Implementation of the see saw mechanism: Assume that all Eigenvalues of *M* are large
- Effective Theory at low energies: Only light, practically left handed neutrinos
- Effect of right handed neutrino:

Majorana mass term for the light neutrinos

$$\mathcal{L}_{mass} = -\frac{1}{2} \left(N_L^T m^T M^{-1} m C N_L + \bar{N}_L m^T M^{-1} m C \bar{N}_L^T \right)$$

1

In case you do not like right handed neutrinos: "Effective Theory Picture of new physics"

• Add higher dimensional operators:

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{BSM}}} \sum_{k} C_{k}^{(5)} \mathcal{O}_{k}^{(5)} + \frac{1}{\Lambda_{\text{BSM}}^{2}} \sum_{k} C_{k}^{(6)} \mathcal{O}_{k}^{(6)} + \cdots$$

Only a single type of dim-5 operator in the SM

$$\mathcal{O}_{ij}^{(5)} = \left(L_i H^c\right)^c \left(H^{\dagger,c} L_j\right)$$

with H: Higgs field and the left-handed lepton doublet

$$L_i = \begin{pmatrix} \nu_i \\ \ell_i \end{pmatrix}$$

 Upon symmetry breaking, this operator generates (majorana) neutrino masse term *L_{mass}*

Lepton Mixing: PMNS Matrix

- Diagonalization of the Mass matrices:
 - Charged leptons:

$$m^E = U^\dagger m^E_{diag} W$$

• Neutrinos: "Orthogonal" transformation:

$$m^T M^{-1} m = O^T m_{diag}^{\nu} O$$
 with $O^{\dagger} O = 1$

- Again no Effect on neutral currents
- Charged Currents: Interaction with ϕ_+ :

$$\frac{1}{v} \mathcal{N}_L m^E \mathcal{E}_R \phi_+ + \text{ h.c.}$$
$$= \frac{1}{v} \overline{\mathcal{N}}_L O^T (O^* U^{\dagger}) m^E_{diag} W \mathcal{E}_R \phi_+ + \text{ h.c.}$$

くロト (過) (目) (日)

• A Mixing Matrix occurs:

$$V_{PMNS} = O^* U^\dagger$$

Pontecorvo Maki Nakagawa Sakata Matrix

- V_{PMNS} is unitary like the CKM Matrix
- Left handed neutrinos are Majorana: No freedom to rephase these fields!
 - For *n* families: *n*² Parameters
 - Only *n* Relative phases free
 - $\longrightarrow n(n-1)$ Parameters
 - n(n-1)/2 are angles
 - n(n-1)/2 are phases: More sources for *CP* violation

ヘロト ヘアト ヘビト ヘビト

Almost like CKM: Three Euler angles θ_{ij}

$$U_{12} = \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \ , \quad U_{13} = \begin{bmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{bmatrix} \ , \quad U_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix}$$

• A Dirac Phase δ and two Majorana Phases α_1 and α_2

$$U_{\delta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta_{13}} \end{bmatrix} \quad U_{\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{-i\alpha_{1}} & 0 \\ 0 & 0 & e^{-i\alpha_{2}} \end{bmatrix}$$

- PMNS Parametrization: $V_{\text{PMNS}} = U_{23}U_{\delta}^{\dagger}U_{13}U_{\delta}U_{12}U_{\alpha}$
- $\Theta_{23} \sim 45^{\circ}$ is "maximal" (atmospheric ν 's)
- $\Theta_{13} \sim 0$ is small (ν 's from reaktors)
- $\sin \Theta_{13} \sim 1/\sqrt{3}$ is large (solar ν 's)

・ロット (雪) () () () ()

Maltoni et al '04

・ロト ・回 ト ・ヨト ・ヨト

parameter	best fit	2σ	3σ	5σ
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	6.9	6.0 - 8.4	5.4 - 9.5	2.1 - 28
$\Delta m^2_{31} \left[10^{-3} {\rm eV}^2 \right]$	2.6	1.8 - 3.3	1.4 - 3.7	0.77 - 4.8
$\sin^2 \theta_{12}$	0.30	0.25 - 0.36	0.23 - 0.39	0.17 - 0.48
$\sin^2 \theta_{23}$	0.52	0.36 - 0.67	0.31 - 0.72	0.22 - 0.81
$\sin^2 \theta_{13}$	0.006	≤ 0.035	≤ 0.054	≤ 0.11

$$V_{\text{PMNS}} \sim egin{bmatrix} c_{12} & s_{12} & 0 \ -rac{s_{12}}{\sqrt{2}} & rac{c_{12}}{\sqrt{2}} - \sqrt{rac{1}{2}} \ -rac{s_{12}}{\sqrt{2}} & rac{c_{12}}{\sqrt{2}} - \sqrt{rac{1}{2}} \end{bmatrix} \sim egin{bmatrix} \sqrt{rac{2}{3}} & \sqrt{rac{1}{3}} & 0 \ -\sqrt{rac{1}{6}} & \sqrt{rac{1}{3}} - \sqrt{rac{1}{2}} \ -\sqrt{rac{1}{6}} & \sqrt{rac{1}{3}} - \sqrt{rac{1}{2}} \end{bmatrix}$$

• No Hierarchy !

Consequences of Lepton Mixing

• FCNC Processes in the leptonic Sector:

$$\tau \to \mu \gamma \quad \mu \to e \gamma \quad \tau \to e e e \text{ etc.}$$

$$u_{\tau} \rightarrow \nu_{e} \gamma \quad \nu_{\tau} - \nu_{e} \text{ mixing}$$

• Lepton Number Violation:

Right handed Neutrinos are Majorana fermions: No conserved quantum number corresponding to the rephasing of the right handed neutrino fields Lepton number violation could feed via conserved B - L into Baryon number violation Relation to the Baryon Asymmetry of the Universe ?

ヘロン ヘアン ヘビン ヘビン

Summary of Lecture 3

- Majorana Mass terms can appear for right handed neutrinos
- ... which are NOT related to the Higgs coupling
- There is no reason why this mass term could not be as large as the GUT scale
- ... which would explain in turn the small (observed) neutrino mass (differences)
- A Majorana mass term induces Lepton Number Violation

Key experiment is the neutrino-less double β decay

ヘロン ヘアン ヘビン ヘビン

Many open Questions ...

Masses and Mixings leave many open questions:

- What is the origin of the three(?) families?
- Why are the (fundamental) masses so different?
- If they are really generated by the Higgs mechanism: Why are the Yukawa couplings so small?
- Why are the "fundamental" mass scales so different?

$$\Lambda_{
m cosm.\, const.} \ll \langle ar{q} q
angle^{1/3} \ll v \ll M_{
m Planck}$$

- Messages from Gravity / Cosmology:
 - Is there really dark matter, and (if yes) what ist it?
 - What is "dark energy"?

ヘロト ヘ戸ト ヘヨト ヘヨト

Overall Summary

- The phenomenon "mass" has many different aspects
- Probably one of the mort important aspects is
- ... Mass gravitates
- Expect further clues form cosmological findings (such as dark matter, dark energy etc.)

Maybe in the years form now, this lecture would look completely different

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト