Recent Results from CMB Experiments

Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) Schule für Astroteilchenphysik, October 16, 2014

The Breakthrough

• Now we can observe the physical condition of the Universe when it was very young.

Night Sky in Optical (~0.5µm)

courtesy University of Arizona

Night Sky in Microwave (~1mm)

courtesy University of Arizona

Night Sky in Microwave (~1mm)

$\frac{1}{100} = 2.725K$

COBE Satellite, 1989-1993

courtesy University of Arizona

nm 0.3mm ⁷ (from Samtleben et al. 2007)

Arno Penzias & Robert Wilson, 1965

A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE AT 4080 Mc/s

Measurements of the effective zenith noise temperature of the 20-foot horn-reflector antenna (Crawford, Hogg, and Hunt 1961) at the Crawford Hill Laboratory, Holmdel, New Jersey, at 4080 Mc/s have yielded a value about 3.5° K higher than expected. This excess temperature is, within the limits of our observations, isotropic, unpolarized, and free from seasonal variations (July, 1964-April, 1965). A possible explanation for the observed excess noise temperature is the one given by Dicke, Peebles, Roll, and Wilkinson (1965) in a companion letter in this issue.

May 13, 1965

Bell Telephone Laboratories, Inc. CRAWFORD HILL, HOLMDEL, NEW JERSEY

•Isotropic

A. A. PENZIAS R. W. Wilson

1:25 model at Deutsches Museum

The REAL back-end system of the Penzias-Wilson experiment, exhibited at Deutsches Museum

19 Hornantennenanschluss mposed of many audible by a radio Hohlleiterzug nise. on characteristic perature can be sing the horn a collected by bannel to the V Vergleichs-quelle s brought r much like in electrical 0000 a recorder. own Q th the ith the Schreiber

May 20, 1964 Die CMB"Discovered"De Ra

ze

B

Schreiberaufzeichnung der ersten Messung des Mikrowellenhintergrundes am 20.5.1964

Recording of the first measurement of cosmic microwave background radiation taken on 5/20/1964. 13

A spare unit of COBE/DMR (λ =1cm)

Wilkinson Microwave Anisotropy Probe WMAP at Lagrange 2 (L2) Point

L2 is 1.5 million kilometers from Earth

 WMAP leaves Earth, Moon, and Sun behind it to avoid radiation from them

WMAP Spacecraft **Radiative Cooling: No Cryogenic System**

upper omni antenna

CMB: The Farthest and Oldest Light That We Can Ever Hope To Observe Directly

1st Stars about 400 million yrs.

Big Bang Expansion

13.7 billion years

•When the Universe was 3000K (~380,000 years after the Big Bang), electrons and protons were combined to form neutral hydrogen. 20

Dark Energy Accelerated Expansion

Galaxies, Planets, etc. WMAP

How was CMB created?

- When the Universe was hot...
 - The Universe was a hot soup made of:
 - Protons, electrons, and helium nuclei
 - Photons and neutrinos
 - Dark matter

up made of: lium nuclei

Universe as a hot soup

- Free electrons can scatter photons efficiently.
- Photons cannot go very far.

Recombination and Decoupling

- I 500K
- [recombination] When the temperature falls below 3000 K, almost all electrons are captured by protons and helium nuclei.
 - [decoupling] Photons are no longer scattered. I.e., photons and electrons are no longer coupled.

A direct image of the Universe when it was 3000 K.

How were these ripples created?

Have you dropped potatoes in a soup?

• What would happen if you "perturb" the soup?

The Cosmic Sound Wave

Can You See the Sound Wave?

Analysis: 2-point Correlation

• $C(\theta) = (1/4\pi) \sum (2I+1) C_I P_I(\cos\theta)$

•How are temperatures on two points on the sky, separated by θ , are correlated?

• "Power Spectrum," CI

- How much fluctuation power do we have at a given angular scale?
- I~180 degrees / θ

COBE To WMAP

COBE is unable to resolve the structures below ~7 degrees
WMAP's resolving power is 35 times better than COBE.

•What did WMAP see?

• "The Universe as a potato soup"

• Main Ingredients: protons, helium nuclei, electrons, photons

• We measure the composition of the Universe by analyzing the wave form of the cosmic sound waves.

How baryons and photons move together $\dot{\delta}_B = -\frac{k}{-}V_B - 3\dot{\Phi},$ $\dot{\delta}_{\gamma} = -\frac{4}{3}\frac{k}{a}V_{\gamma} - 4\dot{\Phi},$ $\dot{V}_B = -\frac{\dot{a}}{\sigma}V_B + \frac{k}{\sigma}\Psi + \frac{\sigma_T n_e}{R}(V_\gamma - V_B),$ $\dot{V}_{\gamma} = \frac{1}{4} \frac{k}{a} \delta_{\gamma} + \frac{k}{a} \Psi + \sigma_T n_e (V_B - V_{\gamma}),$ 37 $ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(t)(1+2\Phi)\delta_{ij}dx^{i}dx^{j}$

$R \equiv 3\rho_B/(4\rho_\gamma)$

Combine three equations into one and simplify: $R \equiv 3\rho_B/(4\rho_\gamma)$ $\Psi = -\Phi$ and $\dot{\Phi} = 0$ $\frac{1}{(+R)} \frac{k^2}{a^2} \delta_{\gamma} = \frac{4}{3} \frac{k^2}{a^2} \Phi$

$$\ddot{\delta}_{\gamma} + \frac{1+2R}{1+R}\frac{\dot{a}}{a}\dot{\delta}_{\gamma} + \frac{1}{3(1)}$$

- A wave equation, with the "speed of sound" given by the speed of light divided by sqrt[3(I+R)]
- Photon's acoustic oscillation is influenced by baryons

Further simplify [with WKB]

Solution:

 $\frac{1}{4}\delta_{\gamma} = (1+R)\Phi + A\cos(kr_s) + B\sin(kr_s)_{39}$

 r_s is the "sound horizon" defined by $r_s \equiv \int_0^{t_*} c_s \frac{dt}{dt} = 147 \text{ Mpc}$

Initial Conditions

• On "super sound-horizon scales" [$kr_s << I$], the photon and matter density perturbations are given by the adiabatic condition:

$$\frac{1}{4}\delta_{\gamma} = \frac{1}{3}\delta_m$$

• Using this, we obtain: $\frac{1}{4}\delta_{\gamma} = (1+R)\Phi - \left(\frac{1}{3}+R\right)\Phi\cos(kr_s)_{40}$

How baryons affect the photon density perturbation [FSZ+], -- No Daryou

with baryon

is Rhs (Vp=148 Mpc)

41

1st peak to 2nd peak ratio goes up as RT(1) Rhs 42

Determining Baryon Density From CI

Effects of baryons

- ... or the effects of any mass that interacts with photons.
- More baryons -> the heights of the odd peaks are enhanced with respect to the even peaks

- How about the effects of mass that does not interact with photons?
 - Gravitational redshift/blueshift

How photons lose/gain energy gravitationally

• The geodesic equation for the photon 4-momentum:

$$\frac{dp^{\mu}}{d\lambda} + \Gamma^{\mu}_{\alpha\beta}p$$

• gives a change of the photon energy as:

1 dp	1 da	a
p dt	a dt	(

 $p^{\alpha}p^{\beta}=0$

 $\frac{d\Psi}{dt} + \frac{\partial\Psi}{\partial t} - \frac{\partial\Phi}{\partial t}$ ⁴⁵

"O" and " \mathcal{E} " denote the observed and emitted epochs.

Gravitational potentials decay at two epochs

- Gravitational potentials decay when the expansion rate is too fast for matter to clump together. This happens when:
 - Radiation contributes significantly to the energy density of the universe [early time contribution]
 - Dark energy contributes significantly to the energy density of the universe [late time contribution]

Determining Dark Matter Density From C_I

Effects of dark matter

• ... or the effects of any mass that does not interacts with photons but contributes to a gravitational potential

• Less dark matter [i.e., radiation more important in the energy density] -> the height of the first peak is enhanced with respect to the other peaks

Total Matter Density from z=1090 Total Energy Density from the Distance to z=1090

Dark Energy Accelerated Expansion Galaxies, Planets, etc. WMAP

Angular Diameter Distance to z=1090 $=H_0^{-1} \int dz / \left[\Omega_m(1+z)^3 + \Omega_{\Lambda}\right]^{1/2}$ $\frac{\partial dark \ energy}{\partial ark \ energy}$ 50

NASA/WMAP Science Team

Composition of the Universe

Cosmic Pie Chart

 Cosmological observations (CMB, galaxies, supernovae) over the last decade told us that we don't understand much of the Universe.

Hydrogen & Helium Dark Matter Dark Energy

Origin of Fluctuations

- OK, back to the cosmic hot soup.
- The sound waves were created when we perturbed it.
- "We"? Who?
- Who actually perturbed the cosmic soup?
- Who generated the original (seed) ripples?

Theory of the Very Early Universe

- The leading theoretical idea about the primordial Universe, called "Cosmic Inflation," predicts: (Starobinsky 1980; Sato 1981; Guth 1981;
 - (Starobinsky 1980; Sato 1981; Guth 1981; Linde 1982; Albrecht & Steinhardt 1982; Starobinsky 1980)
 - The expansion of our Universe *accelerated* in a tiny fraction of a second after its birth.
 - Just like Dark Energy accelerating today's expansion: the acceleration also happened at very, very early times!
- Inflation stretches "micro to macro"
 - In a tiny fraction of a second, the size of an atomic nucleus (~10⁻¹⁵m) would be stretched to 1 A.U. (~10¹¹m), at least.

The Early Universe Could Have Done This Instead

...or, This.

...or, This.

Stretching Micro to Macro

Macroscopic size at which gravity becomes important

Quantum fluctuations on microscopic scales

59 Quantum fluctuations cease to be quantum, and become observable!

NFLATION!

Quantum Fluctuations

Heisenberg's Uncertainty Principle

- You may borrow a lot of energy from vacuum if you promise to return it to the vacuum immediately.
- The amount of energy you can borrow is inversely proportional to the time for which you borrow the energy from the vacuum.

Mukhanov & Chibisov (1981); Guth & Pi (1982); Starobinsky (1982); Hawking (1982); Bardeen, Turner & Steinhardt (1983)

(Scalar) Quantum Fluctuations $\delta \phi = (Expansion Rate)/(2\pi)$ [in natural units]

- Why is this relevant?
- The cosmic inflation (probably) happened when the Universe was a tiny fraction of second old.
 - Something like 10⁻³⁶ second old
 - (Expansion Rate) ~ I/(Time)
 - which is a big number! ($\sim 10^{12}$ GeV)
 - Quantum fluctuations were important during inflation!

Inflation Offers a Magnifier for Microscopic World

• Using the power spectrum of primordial fluctuations imprinted in CMB, we can observe the quantum phenomena at the ultra high-energy scales that would never be reached by the particle accelerator.

 Measured value (WMAP 9-year data only): $n_s = 0.972 \pm 0.013$ (68%CL)

Planck Result!

Planck (2013)

Planck Result!

Planck (2013)

Starobinsky (1979) (Tensor) Quantum Fluctuations, a.k.a. Gravitational Waves

 $h = (Expansion Rate)/(2^{1/2}\pi M_{planck})$ [in natural units]

[h = "strain"]

- Quantum fluctuations also generate ripples in spacetime, i.e., gravitational waves, by the same mechanism.
- Primordial gravitational waves generate temperature anisotropy in CMB.

Gravitational waves are coming toward you!

• What do they do to the distance between particles?

Two GW modes

• Anisotropic stretching of space generates quadrupole temperature anisotropy. How?

We measure distortions in space

• A distance between two points in space

$$d\ell^2 = a^2(t)[1 + 2\zeta(\mathbf{x}, t)][$$

- ζ : "curvature perturbation" (scalar mode)
 - Perturbation to the determinant of the spatial metric
- h_{ii}: "gravitational waves" (tensor mode)
 - Perturbation that does not change the determinant (area)

 $[\delta_{ij} + h_{ij}(\mathbf{x},t)]dx^{\imath}dx^{\jmath}$

• The BICEP2 results suggest **r~0.2**, if we do not subtract any foregrounds

 $\langle h_{ij}h^{ij}\rangle$ $\langle \langle Z \rangle$

CMB Polarisation

• CMB is [weakly] polarised!

Stokes Parameters

Stokes U

23 GHz [13 mm]

WMAP Collaboration

WMAP Collaboration 33 GHz [9.1 mm]

Stokes Q

Stokes U

41 GHz [7.3 mm]

WMAP Collaboration .3 mm]

Stokes U

61 GHz [4.9 mm]

WMAP Collaboration 9 mm]

Stokes U

WMAP Collaboration 94 GHz [3.2 mm]

Stokes U

How many components?

- CMB: $T_v \sim v^0$
- Synchrotron: $T_v \sim v^{-3}$
- Dust: $T_v \sim v^2$
- Therefore, we need **at least** 3 frequencies to separate them

Physics of CMB Polarisation

- Necessary and sufficient conditions for generating polarisation in CMB:
 - Thomson scattering
 - Quadrupolar temperature anisotropy around an electron

Origin of Quadrupole

- Scalar perturbations: motion of electrons with respect to photons
- Tensor perturbations: gravitational waves

Seeing polarisation in the WMAP data

- Average polarisation data around cold and hot temperature spots
- Outside of the Galaxy mask [not shown], there are 11536 hot spots and 11752 cold spots
- Averaging them beats the noise down

WMAP Collaboration

Radial and tangential polarisation around temperature spots

 This shows polarisation generated by the plasma flowing into gravitational potentials

 Signatures of the "scalar mode" fluctuations in polarisation

• These patterns are called "E modes"

Planck Data!

Planck Collaboration

Sachs-Wolfe: $\Delta T/T = \Phi/3$ Stuff flowing in

Velocity gradient The left electron sees colder photons along the plane wave

Compression increases temperature Stuff flowing in

Pressure gradient slows down the flow

Velocity gradient

- Gravitational potential can generate the Emode polarization, but not B-modes.
- Gravitational waves can generate both Eand B-modes!

Two GW modes

• Anisotropic stretching of space generates quadrupole temperature anisotropy. How?

 Polarisation directions a regions Polarization Power Spectrum

degree scales, before March 17

No detection of B-mode polarization at

March 17, 2014

BICEP2's announcement

What is BICEP2?

- A small [26 cm] refractive telescope at South Pole
- 512 bolometers working at 150 GHz
- Observed 380 square degrees for three years [2010-2012]
- Previous: BICEP1 at 100 and 150 GHz [2006-2008]
- On-going: Keck Array = 5 x BICEP2 at 150 GHz [2011-2013] and additional detectors at 100 and 220 GHz [2014-]

dust

Color range 0 to $4\mu K$

Signature of gravitational waves in the sky [?]

Right ascension [deg.]

Let's try to understand what is shown in this plot, assuming that it is due to gravitational waves

propagation direction of GW

h₊=cos(kx)

Polarisation directions perpendicular/parallel to the wavenumber vector -> E mode polarisation 103

Polarisation directions 45 degrees tilted from to the wavenumber vector -> Bmode polarisation 104

Important note:

- Definition of h_+ and h_x depends on coordinates, but definition of E- and B-mode polarisation does not depend on coordinates
- Therefore, h_+ does not always give E; h_x does not always give B
 - The important point is that h₊ and h_x always **coexist**. When a linear combination of h_+ and h_x produces E, another combination produces B

Signature of gravitational waves in the sky [?]

106 **<u>CAUTION</u>: we are NOT seeing a single plane wave propagating** perpendicular to our line of sight

Signature of gravitational waves in the sky [?]

BICEP2: B signal

There are E modes in the sky as well BICEP2: E signal

Right ascension [deg.] The E-mode polarisation is totally dominated by the scalar-mode fluctuations [density waves]

108

-50
Is the signal cosmological?

- Worries:
 - Is it from Galactic foreground emission, e.g., dust?
 - Is it from imperfections in the experiment, e.g., detector mismatches?

Eiichiro Komatsu March 14 near Munich

If detection of the primordial B-modes were to be reported on Monday, I would like see:

[1] Detection (>3 sigma each) in more than one frequency, like 100 GHz and 150 GHz giving the same answers to within the error bars.

[2] Detection (could be a couple of sigmas each) in a few multipole bins, i.e., not in just one big multipole bin.

Then I will believe it!

110

 \sim

Eiichiro Komatsu March 14 near Munich

If detection of the primordial B-modes were to be reported on Monday, I would like see:

etection (>3 sigma each) in more than one frequency, like 100 GHz and Hz giving the same answers to within the error bars.

i just one big multipole bin.

Then I will believe it!

- etection (could be a couple of sigmas each) in a few multipole bins, i.e.,

 \sim

Analysis: Two-point Correlation Function

BICEP2: B signal

No 100 GHz x 100 GHz [yet] ¹¹³

Can we rule out synchrotron or dust?

September 22, 2014

Planck's Intermediate Paper on Dust

 Values of the "tensor-to-scalar ratio" equivalent to the B-mode power spectrum seen at various locations in the sky

$1.0 \log_{10}(r_{\rm d})$

- Planck measured the B-mode power spectrum at 353 GHz well
- Extrapolating it down to 150 GHz appears to explain all of the signal seen by BICEP2...

Previous Situation [before Monday]

- No strong evidence that the detected signal is not cosmological
- No strong evidence that the detected signal is cosmological, either

Current Situation

- Planck shows the evidence that the detected signal is not cosmological, but is due to dust
- No strong evidence that the detected signal is cosmological