Neutrinos from Outa Space – Recent Results from IceCube

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Alexander Kappes Schule für Astroteilchenphysik Obertrubach-Bärnfels, 11.10.2014

Outline

- A century-old mystery and the cosmic-ray-neutrino connection
- How to detect high-energy neutrinos?
- IceCube A neutrino observatory at the South Pole
- Recent astrophysical neutrino results from IceCube
- Cosmic-ray physics with IceCube and IceTop
- Looking into the future

1912: Discovery of cosmic rays (Victor Hess)

Observations before 1912:

• Electroscopes discharge due to natural radioactivity

Balloon experiments since 1912: (Hess, Kolhörster)

- Discharge increases above ~1.5 km altitude
- Conclusion: ionizing radiation from outer space
 → "Cosmic Rays" (Millikan)

... 101 years later

- Measured over 12 orders of magnitude in energy
- Consists of particles → dominated by protons at lower energies
- Power law spectrum (non thermal) with two breaks

Interpretation:

- Galactic sources $\lesssim 10^7 \text{ GeV}$
- Extragalactic sources ≥ 5×10⁹ GeV

Questions:

- What is the composition and does it change with energy?
- What are the sources and how are particles accelerated?

What are the sources?

What are the sources?

Examples of source candidates

supernova remnants (SN1006, optical, radio, X-ray)

active galactic nuclei (artist's view)

binary (artist's view)

gamma-ray bursts (GRB 080319B, X-ray, SWIFT)

Galactic

extragalactic

Extragalactic cosmic rays

- energy density above ankle (3 EeV) ~10⁻²⁶ J cm⁻³
 → injected energy over age of Universe (10¹⁰ yr) ~10³⁷ J Mpc⁻³ yr⁻¹
- corresponds to ~10³⁷ J s⁻¹ per active galactic nuclei ~10⁴⁵ J per gamma-ray burst
 best (only) candidates

How are particles accelerated?

- Many cosmic objects involve strong shocks e.g. supernova remnants, micro-quasars, active galactic nuclei, gamma-ray bursts
- Fermi acceleration (circular process):
 - energy gain by "reflections" on magnetic fields
 - yields power law + required energies achievable

SN1006 (optical, radio, X-ray)

How to locate sources?

How to locate sources?

Production of high-energy photons and neutrinos

Interaction of accelerated particles with

- photon fields (cosmic microwave background, IR, star light)
- matter (star envelop, matter ejected by supernovae . . .)
- \rightarrow production of secondary high-energy (> 0.1 TeV) particles

Why neutrinos?

- Neutrinos point back to their sources
- Neutrinos unambiguously prove acceleration of protons/nuclei, the main component of the cosmic rays
- Neutrinos escape even dense sources
- Neutrinos traverse cosmological distances
- Neutrino sky is terra incognita up to now

Expect surprises

Telescope	User	Date	Intended Use	Actual use
Optical	Galileo	1608	Navigation	Moons of Jupiter
Optical	Hubble	1929	Nebulae	Expanding Universe
Radio	Jansky	1932	Noise	Radio galaxies
Micro-wave	Penzias, Wilson	1965	Radio-galaxies, noise	3K cosmic background
X-ray	Giacconi	1965	Sun, moon	Neutron start, accreting binaries
Radio	Hewish, Bell	1967	lonosphere	Pulsars
γ-rays	Military	1960?	Thermonuclear explosions	Gamma-ray bursts

Source candidates: An example from our galaxy

Supernova remnants:

- Expanding shell of ejected material
- Shock fronts at boundary to interstellar medium
 - \rightarrow acceleration of particles
- High-energy particle acceleration in supernova remnants observed
 - ... but are they proton accelerators?

SN1006 (optical, radio, X-ray)

What neutrino fluxes do we expect?

- Example:
 - supernova remnant Vela Junior
 - γ radiation up to 20 TeV (HESS Coll., A&A (2005))
 - \rightarrow particle acceleration beyond 20 TeV
- Assume hadronic mechanism via pion production:

$$p + p \rightarrow \pi^{\circ} + X \qquad p + p \rightarrow \pi^{\pm} + X$$

$$\downarrow \qquad \downarrow \gamma + \gamma \qquad \qquad \downarrow \mu + \nu_{\mu}$$

$$\downarrow \qquad e + \nu_{\mu} + \nu_{e}$$

• Calculation of neutrino fluxes:

For strong sources:

. . .

10⁻¹² – 10⁻¹¹ TeV⁻¹ cm⁻² s⁻¹ @ 1 TeV

Kappes, Hinton, Stegmann, Aharonian, ApJ (2006) Halzen, Kappes, O'Murchadha, PRD (2008) Kistler, Beacom, PRD (2006)

What kind of detector do we need?

- Neutrino cross section:
 σ ≈ 10⁻³⁵ cm² (at 1 TeV)
- Neutrino flux: $dN_v/dAdt = 10^{-12} \text{ cm}^{-2} \text{ s}^{-1} (E_v > 1 \text{ TeV})$
- Rate in ATLAS detector:
 - m_{ATLAS} = 7000 t; $m_{nucleon} \approx 1.7 \cdot 10^{-27}$ kg ⇒ nucleons in ATLAS: N_{ATLAS} ≈ m_{ATLAS} / $m_{nucleon} \approx 4 \cdot 10^{33}$
 - R = N_{ATLAS} $\cdot \sigma \cdot dN_v/dAdt = 4 \cdot 10^{-14} \text{ s}^{-1}$
 - \Rightarrow 800.000 years for 1 neutrino !
- For neutrino astronomy we need very large target masses
 \$\mathcal{O}\$(Gton) = \$\mathcal{O}\$(km³) for ice/water

What kind of detector do we need?

- Neutrino cross section:
 σ ≈ 10⁻³⁵ cm² (at 1 TeV)
- Neutrino flux: $dN_v/dAdt = 10^{-12} \text{ cm}^{-2} \text{ s}^{-1} (E_v > 1 \text{ TeV})$
- Rate in ATLAS detector:
 - m_{ATLAS} = 7000 t; $m_{nucleon} \approx 1.7 \cdot 10^{-27}$ kg ⇒ nucleons in ATLAS: N_{ATLAS} ≈ m_{ATLAS} / m_{nucle}
 - R = N_{ATLAS} $\cdot \sigma \cdot dN_v/dAdt = 4 \cdot 10^{-14} \text{ s}^{-1}$ \Rightarrow 800.000 years for 1 neutrino !
- For neutrino astronomy we need very large target masses
 O(Gton) = O(km³) for ice/water

What kind of detector do we need?

- Neutrino cross section:
 σ ≈ 10⁻³⁵ cm² (at 1 TeV)
- Neutrino flux: $dN_v/dAdt = 10^{-12} \text{ cm}^{-2} \text{ s}^{-1} (E_v > 1 \text{ TeV})$
- Rate in ATLAS detector:
 - m_{ATLAS} = 7000 t; $m_{nucleon} \approx 1.7 \cdot 10^{-27}$ kg ⇒ nucleons in ATLAS: N_{ATLAS} ≈ m_{ATLAS} / $m_{nucleon}$
 - R = N_{ATLAS} $\cdot \sigma \cdot dN_v/dAdt = 4 \cdot 10^{-14} \text{ s}^{-1}$ \Rightarrow 800.000 years for 1 neutrino !
- For neutrino astronomy we need very large target masses
 O(Gton) = O(km³) for ice/water

Detection of cosmic neutrinos

- Detection & reconstruction via Cherenkov light of secondary particles
 → transparent detection media
- Huge detection volumes \rightarrow natural

Time & position of hits

 $\mathbf{\Psi}$ μ trajectory $\rightarrow \nu$ trajectory

Light intensity

IceCube at the South Pole

IceCube at the South Pole

The IceCube Observatory

- IceTop: Air shower detector
- InIce: 86 strings (5160 PMTs) Instrumented volume: 1 km³
- DeepCore densely instrumented central region (8 strings)
- Optical sensor
 10" photomultiplier (PMT)
 + in situ signal digitization
 in pressure glass sphere
- Completed since Dec. 2010 (data taking since 2005)

Life at the South Pole

Drilling and deploying

 \rightarrow 4.8 MW heating plant

Drilling and deployment

IceCube laboratory

- ICL is central data center for IceCube
- All cables and servers for IceCube DOMs, DAQ and online filtering
- All Level 1 filtering done at South Pole in real time and data sent north via satellite

The IceCube Collaboration

University of Alberta-Edmonton University of Toronto

USA

Clark Atlanta University **Drexel University** Georgia Institute of Technology Lawrence Berkeley National Laboratory Michigan State University **Ohio State University** Pennsylvania State University South Dakota School of Mines & Technology Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls Yale University

Niels Bohr Institute Denmark

Chiba University, Japan

Sungkyunkwan University

versity of Oxford, UK

Belgium Université Libre de Bruxelles Université de Mons Universiteit Gent Vrije Universiteit Brussel

Korea

Sweden Stockholms universitet

Uppsala universitet

Germany

Deutsches Elektronen-Synchrotron Friedrich-Alexander-Universität Erlangen-Nürnberg Humboldt-Universität zu Berlin Ruhr-Universität Bochum RWTH Aachen Technische Universität München Technische Universität Dortmund Universität Mainz Universität Wuppertal

Université de Genève, Switzerland

University of Canterbury, New Zealand

Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Japan Society for the Promotion of Science (JSPS) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR)

University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

280 people from 44 institutes in 12 countries

University of Adelaide, Australia

Understanding the ice

 Photon propagation in ice dominated by scattering

Ice properties have to be very well measured

Neutrino signatures

Track-like

- Good angular resolution in ice (IceCube) ~ 0.5° for E > 10 TeV
- Sensitive volume > instrumented volume

- Good energy resolution in ice (IceCube) < 10% for E > 10 TeV
- Reduced angular resolution in ice (IceCube) > O(10°)
- Sensitive volume ≈ instrumented volume

cascade in IceCube

Atmospheric muons and neutrinos

Recent astrophysical results from IceCube

"Classical" picture of neutrino astronomy

Point sources: Sensitivities & upper limits

Point sources: Sensitivities & upper limits

Gamma-ray bursts (GRBs)

- Very intense flashes of γ radiation (keV-MeV) of short duration $\mathcal{O}(10 \text{ s})$
- Eject material with Lorentz factor $\Gamma \gtrsim 300$
- One of few candidate source classes of ultra-high energy cosmic rays (E > 10¹⁹ eV)

Gamma-ray bursts (GRBs)

- Very intense flashes of γ radiation (keV-MeV) of short duration $\mathcal{O}(10 \text{ s})$
- Eject material with Lorentz factor $\Gamma \gtrsim 300$
- One of few candidate source classes of ultra-high energy cosmic rays (E > 10¹⁹ eV)

Neutrinos from gamma-ray bursts

Neutrinos from gamma-ray bursts

Neutrinos from above – the power of veto

First idea: Schönert et al., PRD (2009)

- Accept events with no light in veto layer
 + large signal in fiducial volume
 → cosmic neutrinos
- Reject events with light in veto layer
 → atmospheric muons

Neutrinos from above – the power of veto

First idea: Schönert et al., PRD (2009)

- Accept events with no light in veto layer
 + large signal in fiducial volume
 → cosmic neutrinos
- Reject events with light in veto layer
 → atmospheric muons
- Self-veto of atmospheric neutrinos through accompanying muons ! (muons can range out at low energies)

Discovery of cosmic neutrinos with IceCube

- Search for High-Energy-Starting Events (HESE)
- 2 years data: 28 events observed (background 10.6^{+5.0}-3.6 → 4.2σ)
 → IceCube, Science (2013)
- 2+1 year data: observed 28+9 events (background 15.0^{+7.2}-4.5)
 - 2-d fit (zenith+energy) \rightarrow 5.7 σ rejection of atmospheric-only hypothesis
 - compatible with isotropic flux with flavor ratio (1:1:1)
 - best-fit astrophysical E⁻² flux: E²Φ ≈ 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ (best-fit slope E^{-2.3})

IceCube, arXiv:1405.5303 (2014) accepted by PRL

Declination distribution for different energy cuts

Tracks vs. cascades

E _{dep} > 60 TeV	IceCube, arXiv:1405.5303 (supplements)					
	nom. atm. muons	nom. (best-fit) atm. neutrinos	cosmic neutrinos (E ^{-2.3} best-fit)	sum nom. (best-fit)	data	
all events	~0.4	2.4 (1.4)	18.6	21.4	20	
tracks	~0.4	1.7 (1.0)	3.5	5.5 (4.8)	4	
cascades	~0	0.7 (0.4)	15.1	15.8 (15.4)	16	
tracks/cascades	_	~2.5	~0.2	~0.35 (~0.3)	~0.25	

• $xsec(CC) \approx 2 \cdot xsec(NC)$

- (1:1:1) flavor ratio yields
 - 7/9 ≈ 80% cascades
 - 2/9 ≈ 20% tracks
- conv. atmospheric neutrinos > TeV mostly ν_{μ}
 - 1/3 ≈ 35% cascades
 - 2/3 ≈ 65% tracks

Tracks vs. cascades

E _{dep} > 60 TeV	IceCube, arXiv:1405.5303 (supplements)				
	nom. atm. muons	nom. (best-fit) atm. neutrinos	cosmic neutrinos (E ^{-2.3} best-fit)	sum nom. (best-fit)	data
all events	~0.4	2.4 (1.4)	18.6	21.4	20
tracks	~0.4	1.7 (1.0)	3.5	5.5 (4.8)	4
cascades	~0	0.7 (0.4)	15.1	15.8 (15.4)	16
tracks/cascades	_	~2.5	~0.2	~0.35 (~0.3)	~0.25

xsec(CC) ≈ 2 · xsec(NC)
 relative cross sections

	v_{e}	$ u_{\mu}$	$\nu_{ au}$		
NC	1	1	1		
CC	2	2	2		
	les	tracks			

- (1:1:1) flavor ratio yields
 - 7/9 ≈ 80% cascades
 - 2/9 ≈ 20% tracks
- conv. atmospheric neutrinos > TeV mostly ν_{μ}
 - 1/3 ≈ 35% cascades
 - 2/3 ≈ 65% tracks

The PeV neutrinos

Can we identify sources?

IceCube skymap

no indication for individual sources no correlation with Galactic plane

Can we identify sources?

IceCube skymap

Latest news: 4th HESE year (IC86-II)

- 17 additional events above 30 TeV (no new Sesame Street characters)
- More information soon

Lowering the energy threshold

- Medium Energy Starting Event (MESE) search
- Sliding veto region: grows with decreasing energy (≥ 2 hits associated with potential muon)
- Lowers threshold for cosmic neutrinos down to 10 TeV

Multi-flavor, all-sky search in IC79+86-I

A steep spectrum

- Spectrum compatible with HESE
- Best fit index for single power law:
 Γ = 2.5±0.1

Implications:

- for pp interactions, ν and γ spectra follow initial proton power-law spectrum
 - → comparison of IceCube flux with GeV photons
- Extragalactic γ Background (EGB) measured by Fermi → Γ ≤ 2.2
 - \rightarrow p γ , sources optically thick, atm. flux @ $\mathcal{O}(10 \text{ TeV})$ not understood ... ?

Upgoing neutrinos (IC79+86-I)

- Cosmic neutrino flux also visible in upgoing neutrinos (3.9σ)
- Compatible with other measurements

So what do we know about the astrophysical neutrinos flux?

- Compatible with an isotropic cosmic neutrino flux (10 TeV 3 PeV)
 - no correlation with Galactic plane
 - no correlation with specific sources
 - → dominated by extragalactic sources (Milky Way halo might also be a possibility)
- Compatible with a (1:1:1) flavor ratio
- E⁻² Φ ≈ 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ per flavor
- Can be fit reasonably well with a single power law (index varies between 2.3–2.5 depending on energy range)
- For Γ ≥ 2.3, non visibility of Glashow resonance at 6.3 PeV does NOT require a cutoff at PeV energies

The big picture

Cosmic-ray physics with IceCube and IceTop

Cosmic-ray air showers

- Use atmosphere as target for cosmic rays
 → particle shower
- Ground detectors measure shower components
 - charged particles: muons, electrons (hadrons)
 - fluorescence light
 - Cherenkov light

Aerial view of IceCube/IceTop (81 stations, 162 tanks)

IceTop and cosmic rays - Spectrum and composition

- Atmosphere (slant) depth depends on zenith angle
 X (θ) = X(0) / cos(θ)
- Flux not isotropic for pure proton or iron assumption
 - \rightarrow mixed composition needed
 - \rightarrow composition sensitivity with IceTop only

IceTop and cosmic rays - Spectrum and composition

- Atmosphere (slant) depth depends on zenith angle
 X (θ) = X(0) / cos(θ)
- Flux not isotropic for pure proton or iron assumption
 - \rightarrow mixed composition needed
 - \rightarrow composition sensitivity with IceTop only

IceTop and cosmic rays - The fine-structure of the spectrum

IceTop and cosmic rays - The fine-structure of the spectrum

IceTop and cosmic rays - The fine-structure of the spectrum

IceCube Coll., arXiv:1307.3795

Cosmic rays composition - Combing IceCube and Ice

- Ratio of high-energy muons (IceCube, dE/dx) to air shower energy (IceTop, S₁₂₅) depends on composition (+ zenith angle)
- Observe increasing "heaviness" of composition with increasing energy

Physics with neutrino telescopes

Physics with neutrino telescopes

Looking into the future

The road ahead

After 10 years of IceCube data-taking

- Muon neutrinos (point source searches)
 - ~90 astrophysical ν_{μ} above 100 TeV
- Cascade events (energy spectrum/flavor composition)
 - ~100 events above 60 TeV
 - ~10 events above 1 PeV
- \rightarrow need significantly more events

Plans for a next-generation IceCube

- In-ice detector of 5–10 km³
- Extended surface veto to reject atmospheric showers (muons/neutrinos)
- Requires development of new hardware (out-dated electronics, power consumption ...)

Different possible configurations

Top area (instrumented+60m border): 0.9 km²

Volume: 0.9 km³

Strings: IC86 spacing: ~125m top area (instrumented+60m border): 5.3 km² Volume: 6.9 km³ top area (instrumented+60m border): 5.6 km² Volume: 7.3 km³

Strings: IC86+96 spacing: ~240m Strings: IC86+2x60 spacing: ~240m

Karle, Neutrinos Beyond IceCube, Arlington, April 2014

First studies: effective muon area (loose cuts)

First studies: effective muon area (loose cuts)

First studies: effective muon area (loose cuts)

Karle, Neutrinos Beyond IceCube, Arlington, April 2014

First studies: angular resolution

Karle, Neutrinos Beyond IceCube, Arlington, April 2014

Expanded surface veto

- A surface veto above 1 PeV (cosmic primary) could reject most atmospheric muon AND neutrino background above 100 TeV.
- An efficient surface veto, 100 km², for 3 5 sr background free cosmic and some cascade detection

Karle, Neutrinos Beyond IceCube, Arlington, April 2014

Gain in muon signal events with surface veto (100% effective for primaries ≥ 1 PeV)

CURRENT IceCube detector

