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Outline

● A century-old mystery and the cosmic-ray-neutrino connection

● How to detect high-energy neutrinos?

● IceCube - A neutrino observatory at the South Pole

● Recent astrophysical neutrino results from IceCube

● Cosmic-ray physics with IceCube and IceTop

● Looking into the future
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1912: Discovery of cosmic rays (Victor Hess)

Observations before 1912:
● Electroscopes discharge due to 

natural radioactivity

Balloon experiments since 1912: 
(Hess, Kolhörster)
● Discharge increases 

above ~1.5 km altitude
● Conclusion: ionizing radiation 

from outer space
→ “Cosmic Rays” (Millikan)
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. . . 101 years later

4

LHC
beam

energy

Cosmic ray spectrum

● Measured over 12 orders of magnitude 
in energy

● Consists of particles → dominated by 
protons at lower energies

● Power law spectrum (non thermal)
with two breaks
Interpretation:
- Galactic sources ≲ 107 GeV
- Extragalactic sources ≳ 5×109 GeV

Questions:
● What is the composition and does

it change with energy?
● What are the sources and 

how are particles accelerated?



What are the sources?
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Examples of source candidates

gamma-ray bursts
(GRB 080319B, X-ray, SWIFT) 

active galactic nuclei
(artist’s view)

supernova remnants
(SN1006, optical, radio, X-ray)

binary
(artist’s view)

Galactic

extragalactic



Energy budget for cosmic rays

Galactic cosmic rays
● energy density ~10-19 J cm-3

storage time in Milky Way ~3×106 yr

● preferred candidates: supernovae
 released energy (no ν’s) ~1044 J
 rate ~2−3 per century

 → dESN/dt ~ 10-32 J cm-3 s-1 ≈ 10 × dECR/dt

Extragalactic cosmic rays
● energy density above ankle (3 EeV) ~10-26 J cm-3

→ injected energy over age of Universe (1010 yr) ~1037 J Mpc-3 yr-1

● corresponds to ~1037 J s-1 per active galactic nuclei
 ~1045 J per gamma-ray burst

7

} injection rate 
dECR/dt ~10-33 J cm-3 s-1

} best (only) candidates

50 kly 1 kly

6 kly

volume ≈ 1067 cm3

Milky Way



How are particles accelerated?

● Many cosmic objects involve strong shocks 
e.g. supernova remnants, micro-quasars, 
active galactic nuclei, gamma-ray bursts

● Fermi acceleration (circular process): 
- energy gain by “reflections” on magnetic fields
- yields power law + required energies achievable
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SN1006
(optical, radio, X-ray)

shock front
particle
trajectory

B fields

B fields

supernova remnant



How to locate sources?
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How to locate sources?
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Interaction of accelerated particles with
● photon fields (cosmic microwave background, IR, star light)
● matter (star envelop, matter ejected by supernovae . . . )

→ production of secondary high-energy (> 0.1 TeV) particles

Production of high-energy photons and neutrinos
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with electronswith protons

p"+"p(γ)"→"π±"+"X
neutrinos

photons
p"+"p(γ)"→"π0"+"X

CR

e"+"γlow/energy"→"e"+"γhigh/energy"
(inverse Compton scattering)↳"γ + γ

↳"μ±"+"νμ

↳"e±"+"νμ"+"νe

CR



Why neutrinos?

● Neutrinos point back to their sources

● Neutrinos unambiguously prove acceleration of protons/nuclei,
the main component of the cosmic rays

● Neutrinos escape even dense sources

● Neutrinos traverse cosmological distances

● Neutrino sky is terra incognita up to now
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Telescope User Date Intended0Use Actual0use

Optical Galileo 1608 Navigation Moons of Jupiter

Optical Hubble 1929 Nebulae Expanding 
Universe

Radio Jansky 1932 Noise Radio galaxies

Micro-wave Penzias, Wilson 1965 Radio-galaxies, noise 3K cosmic 
background

X-ray Giacconi ... 1965 Sun, moon Neutron start, 
accreting binaries

Radio Hewish, Bell 1967 Ionosphere Pulsars

γ-rays Military 1960? Thermonuclear explosions Gamma-ray 
bursts

Expect surprises



What are the fluxes and
how to detect high-energy neutrinos?



Supernova remnants:

● Expanding shell of ejected material

● Shock fronts at boundary to
interstellar medium
→ acceleration of particles

Source candidates: An example from our galaxy
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SN1006
(optical, radio, X-ray)

● High-energy particle acceleration in 
supernova remnants observed

. . . but are they proton accelerators?
Moon

Vela Junior



● Example: 
- supernova remnant Vela Junior
- γ radiation up to 20 TeV (HESS Coll., A&A (2005))

→ particle acceleration beyond 20 TeV

● Assume hadronic mechanism via 
pion production:

● Calculation of neutrino fluxes:
For strong sources:
10-12 –10-11 TeV-1 cm-2 s-1 @ 1 TeV
Kappes, Hinton, Stegmann, Aharonian, ApJ (2006)
Halzen, Kappes, O’Murchadha, PRD (2008)
Kistler, Beacom, PRD (2006)
. . .

What neutrino fluxes do we expect?
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Vela Junior (RX J0852–4622)

""""p"+"p"→"π±"+"X
"""""""""""""""""""""""""""μ"+"νμ

""""""""""""""""""""""""""""""""""e"+"νμ"+"νe

p"+"p"→"π0"+"X
"""""""""""""""""""""""γ"+"γ

Kappes, Hinton, Stegmann, Aharonian, ApJ (2006)

expected
neutrino flux



● Neutrino cross section: 
σ ≈ 10-35 cm2 (at 1 TeV)

● Neutrino flux:
 dNν/dAdt = 10-12 cm-2 s-1 (Eν > 1 TeV)

● Rate in ATLAS detector:

- mATLAS = 7000 t ; mnucleon ≈ 1.7⋅10-27 kg
⇒ nucleons in ATLAS: NATLAS ≈ mATLAS / mnucleon ≈ 4⋅1033

- R = NATLAS⋅σ⋅dNν/dAdt = 4⋅10-14 s-1

⇒ 800.000 years for 1 neutrino !

● For neutrino astronomy we need 
very large target masses
O(Gton) = O(km3) for ice/water

What kind of detector do we need?
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● Detection & reconstruction via Cherenkov light of secondary particles
→ transparent detection media

● Huge detection volumes → natural abundances of ice or water

Detection of cosmic neutrinos

muon

νμ
ν/nucleon

interaction
(νμ"+"N"→"μ"+"X)
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Time & position of hits

μ trajectory → ν trajectory

Energy

Light intensity



Current neutrino telescope projects
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Baikal

IceCube

ANTARES

instr. vol. = 0.01 km3

instr. vol. = 1 km3

instr. vol. = 0.0001 km3

(up to 0.01 km3 effective)

KM3NeT
(phase 1)

GVD



IceCube - a neutrino observatory 
at the South Pole



IceCube at the South Pole

South Pole

IceCube surface area
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IceCube at the South Pole

South Pole

IceCube surface area
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⇒ 3 challenges:
• Drilling of 86 holes

• Understanding the ice

• Muon/neutrino background



● IceTop: Air shower detector

● InIce: 86 strings  (5160 PMTs)
Instrumented volume: 1 km3

● DeepCore
densely instrumented 
central region (8 strings)

● Optical sensor
10” photomultiplier (PMT)
+ in situ signal digitization  
in pressure glass sphere

● Completed since Dec. 2010 
(data taking since 2005)

-1450 m

-2450 m

The IceCube Observatory
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Life at the South Pole



Drilling and deploying

Nozzle delivers:
• 750 l per minute
• 90 degree C
• 70 bar
→ 4.8 MW heating plant





Drilling and deployment



IceCube laboratory

● ICL is central data center for IceCube
● All cables and servers for IceCube DOMs, DAQ 

and online filtering
● All Level 1 filtering done at South Pole in real time 

and data sent north via satellite
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280 people from 44 institutes in 12 countries



IceCube, NIM A711 (2013)

depth [m]

Understanding the ice
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● Photon propagation in ice dominated 
by scattering

λabs 50 − 300 m
λscat  15 − 70 m

● Ice properties have to be very well measured



Neutrino signatures

Track-like

● Good angular resolution 
in ice (IceCube) ~ 0.5° for E > 10 TeV

● Sensitive volume > instrumented volume

Cascade-like

● Good energy resolution 
in ice (IceCube) < 10% for E > 10 TeV

● Reduced angular resolution 
in ice (IceCube) > O(10°)

● Sensitive volume ≈ instrumented volume
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N cascade

W±

νμ μ

N cascade

Z

νX νX

N cascade

W±

νe

e
cascade

muon in IceCube

cascade in IceCube
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Atmospheric muons and neutrinos
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Atmospheric muons and neutrinos
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νμ

μ

νμ
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neutrinos
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Recent astrophysical results from IceCube



“Classical” picture of neutrino astronomy
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IceCube 
1373 days

~180,000 ν
(up-going) high atmospheric muon background

→ 1 PeV energy threshold

p-value (post-trial) = 23%

IceCube 2014, arXiv:1406.6757, 
submitted to ApJ 

ANTARES
1338 days

~5500 ν  
(up-going)

significance maps (equatorial coordinates)

p-value (post-trial) = 2.7%
J.J. Hernandez-Rey

Neutrino 2014

cosmic 
rays

ANTARES

IceCube

Equator

Search for point sources
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Gamma-ray bursts (GRBs)

● Very intense flashes of γ radiation (keV-MeV) of short durationO(10 s)

● Eject material with Lorentz factor Γ ≳ 300 

● One of few candidate source classes of ultra-high energy cosmic rays
(E > 1019 eV)

37

Pi-of-the-Sky (optical)

GRB080319B
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Neutrinos from gamma-ray bursts 

38

SWIFT satellite

γ

ν

timing + direction
→ low background

example GRB neutrino spectrum

Γ = 300

Γ = 1400

Γ = 500

break 
energy

timing/localization
from satellites



Neutrinos from gamma-ray bursts 

38

SWIFT satellite

γ

ν

IceCube: analysis of 506 GRBs → no correlation
Are GRBs really cosmic-ray sources?

timing + direction
→ low background

timing/localization
from satellites
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● Accept events with no light in veto layer
+ large signal in fiducial volume
→ cosmic neutrinos

● Reject events with light in veto layer
→ atmospheric muons 

 Neutrinos from above − the power of veto

39

First idea: Schönert et al., PRD (2009)

veto layer

fiducial
volume

atmospheric
muon

cosmic 
neutrinos
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First idea: Schönert et al., PRD (2009)

veto layer

fiducial
volume

atmospheric
muon

cosmic 
neutrinosatmospheric

neutrino

● Self-veto of atmospheric neutrinos
through accompanying muons !
(muons can range out at low energies)



Discovery of cosmic neutrinos with IceCube

● Search for High-Energy-Starting Events (HESE)
● 2 years data: 28 events observed (background 10.6+5.0-3.6 → 4.2σ)

→ IceCube, Science (2013)

● 2+1 year data: observed 28+9 events (background 15.0+7.2-4.5)
- 2-d fit (zenith+energy) → 5.7σ rejection of atmospheric-only hypothesis

- compatible with isotropic flux with flavor ratio (1:1:1)

- best-fit astrophysical E-2 flux: E2Φ ≈ 10-8 GeV cm-2 s-1 sr-1

(best-fit slope E-2.3)
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IceCube, arXiv:1405.5303 (2014)
accepted by PRL

atmospheric
background atmospheric

background

self-veto

http://arxiv.org/abs/arXiv:1405.5303
http://arxiv.org/abs/arXiv:1405.5303
http://arxiv.org/abs/arXiv:1405.5303
http://arxiv.org/abs/arXiv:1405.5303
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Declination distribution 
for different energy cuts



Tracks vs. cascades

● xsec(CC) ≈ 2 · xsec(NC)

● (1 : 1 : 1) flavor ratio yields 
- 7/9 ≈ 80% cascades
- 2/9 ≈ 20% tracks

● conv. atmospheric neutrinos > TeV mostly ν"
- 1/3 ≈ 35% cascades
- 2/3 ≈ 65% tracks
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1 1 1
2 2 2
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The PeV neutrinos

43

E = 1.1 PeV, θ = 23º E = 1.0 PeV, θ = 62º E = 2.0 PeV, θ = 34º

© DESY
Berlin television tower

PETRA II accelerator DESY



showers-only
p-value = 7%

all events
p-value = 84%

Can we identify sources?
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IceCube skymap

no indication for individual sources
no correlation with Galactic plane



showers-only
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p-value = 84%

Can we identify sources?
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IceCube skymap

no indication for individual sources
no correlation with Galactic plane

hot-spot (7 events) flux prediction 
Gonzalez-Garcia et al. (2013)

ANTARES, ApJL (2014)

ANTARES
upper limit 
90% CL

best declination

• 7 cascades in “hot-spot”
→ low angular resolution

• ANTARES search for source 
with width 0º − 3º
→ source < 0.5º excluded

width 0º

width 0.5º
width 1º

width 3º



Latest news: 4th HESE year (IC86-II)

● 17 additional events above 30 TeV
(no new Sesame Street characters)

● More information soon
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Lowering the energy threshold

● Medium Energy Starting Event (MESE) search
● Sliding veto region: grows with decreasing energy

(≥ 2 hits associated with potential muon)
● Lowers threshold for cosmic neutrinos 

down to 10 TeV

46

atm. neutrino fluxes

detector
surface

down-goingup-going

1 TeV

10 TeV

100 TeV



Multi-flavor, all-sky search in IC79+86-I
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Nominal fluxes

Best fit fluxes

down-going up-going



A steep spectrum

48Murase et al., Phys.Rev. D88 (2013)

Γ = 2.2

Γ = 2.0

atm. neutrinos

astrophysical 
neutrinos

Fermi

MESE

HESE

EGB

● Spectrum compatible with HESE
● Best fit index for single power law:
Γ = 2.5±0.1

Implications:
● for pp interactions, ν and γ spectra follow 

initial proton power-law spectrum
→ comparison of IceCube flux with 
 GeV photons

● Extragalactic γ Background (EGB) 
measured by Fermi → Γ ≲ 2.2
→ pγ, sources optically thick, atm. flux @ 
 O(10 TeV) not understood ... ?



Upgoing neutrinos (IC79+86-I)

● Cosmic neutrino flux also visible in up-
going neutrinos (3.9σ)

● Compatible with other measurements
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So what do we know about the astrophysical neutrinos flux?

● Compatible with an isotropic cosmic neutrino flux (10 TeV − 3 PeV)
- no correlation with Galactic plane
- no correlation with specific sources

● → dominated by extragalactic sources (Milky Way halo might also be a possibility)
● Compatible with a (1 : 1 : 1) flavor ratio
● E-2 Φ ≈ 10-8 GeV cm-2 s-1 sr-1 per flavor
● Can be fit reasonably well with a single power law 

(index varies between 2.3-2.5 depending on energy range)
● For Γ ≳ 2.3, non visibility of Glashow resonance at 6.3 PeV does NOT require 

a cutoff at PeV energies
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Source candidates
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flux from
veto analysis

(preliminary)
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Source candidates
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Atm.&&neutrinos:
AMANDA,&IceCube

WB upper bound

Gaisser'2013

Cosmogenic 
neutrino flux

IceCube'
GRB'limits

The big picture

IceCube flux
(all flavor)

Fermi
EGB

IceCube'
EHE'limits
(all'flavor)



Cosmic-ray physics with IceCube and IceTop



Cosmic-ray air showers

● Use atmosphere as target for cosmic rays
→ particle shower

● Ground detectors measure shower components
- charged particles: muons, electrons (hadrons)
- fluorescence light
- Cherenkov light

54

shower size (Ne)



125 m

10 m

125 m

Aerial view of IceCube/IceTop (81 stations, 162 tanks)
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IceTop and cosmic rays - Spectrum and composition

● IceTop 2835 m above sea-level (692 g cm-2 atmosphere)
→ close to shower maximum

● Shower energy measured from signal 
125 m from shower core (S125)

● Measured spectrum depends on 
assumed composition

56
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IceTop and cosmic rays - Spectrum and composition
● Atmosphere (slant) depth depends on zenith angle
X (θ) = X(0) / cos(θ)

● Flux not isotropic for pure proton or iron assumption
→ mixed composition needed
→ composition sensitivity with IceTop only

57

N

X [g cm-2]

e/m

µ

pure protons pure iron
IceCube Coll., arXiv:1307.3795

θ
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N

X [g cm-2]

e/m

µ

pure protons pure iron
IceCube Coll., arXiv:1307.3795

θ

H4a model

IceCube preliminary
H4a composition
Gaisser, ApP (2012)



IceTop and cosmic rays - The fine-structure of the spectrum

IceCube Coll., arXiv:1307.3795



IceTop and cosmic rays - The fine-structure of the spectrum

IceCube preliminary

3.14

2.90

3.37

IceCube Coll., arXiv:1307.3795



IceTop and cosmic rays - The fine-structure of the spectrum

IceCube Coll., arXiv:1307.3795



Cosmic rays composition - Combing IceCube and IceTop
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Cosmic ray composition - Combing IceCube and IceTop

60

● Ratio of high-energy muons (IceCube, dE/dx) 
to air shower energy (IceTop, S125) depends on 
composition (+ zenith angle)

● Observe increasing “heaviness” of 
composition with increasing energy
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Cosmic rays

Physics with neutrino telescopes
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Cosmic accelerators Diffuse fluxes Dark Matter & 
Exotic Physics

Supernovae Neutrino Properties &
Particle Physics



Cosmic rays

Spectrum around 
“knee” (1015−1017 eV)

Composition

Anisotropy

Physics with neutrino telescopes
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Cosmic accelerators Diffuse fluxes Dark Matter & 
Exotic Physics

Supernovae Neutrino Properties &
Particle Physics

All-sky fluxes

Galactic plane

Extended structures
(e.g. Fermi-Bubbles)

Indirect DM search 
(Sun, Galactic halo)

Magnetic monopoles, 
Q-balls

Lorentz invariance 
violation

Galactic/LMC SNe

Phases

Neutrino hierarchy

Neutrino oscillations

Charm in showers

K/π ratio in showers

Cross sections at 
very high energies

Point-like sources
(SNRs, Binaries ...)

Extended sources

Transients (GRBs, 
AGN flares ...)



Looking into the future



The road ahead

After 10 years of IceCube data-taking

● Muon neutrinos (point source searches)
- ~90 astrophysical νµ above 100 TeV

● Cascade events (energy spectrum/flavor composition)
- ~100 events above 60 TeV
- ~10 events above 1 PeV

→ need significantly more events

Plans for a next-generation IceCube

● In-ice detector of 5−10 km3

● Extended surface veto to reject 
atmospheric showers (muons/neutrinos)

● Requires development of new hardware
(out-dated electronics, power consumption ...)
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120 strings
80 DOMs/string
300 m spacing



Different possible configurations
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Karle, Neutrinos Beyond IceCube, Arlington, April 2014



First studies: effective muon area (loose cuts)
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Karle, Neutrinos Beyond IceCube, Arlington, April 2014



First studies: effective muon area (loose cuts)
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Karle, Neutrinos Beyond IceCube, Arlington, April 2014



First studies: effective muon area (loose cuts)
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Karle, Neutrinos Beyond IceCube, Arlington, April 2014



First studies: angular resolution
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Karle, Neutrinos Beyond IceCube, Arlington, April 2014

angular resolution (hard cuts)



Expanded surface veto

● A surface veto above 1 PeV (cosmic primary) could reject most atmospheric muon 
AND neutrino background above 100 TeV. 

● An efficient surface veto, 100 km2, for 3 – 5 sr background free cosmic and 
some cascade detection
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Karle, Neutrinos Beyond IceCube, Arlington, April 2014



current IceCube
with surface veto
(preliminary)

Cosmic flux:
+75% >100 TeV

5 km

Gain in muon signal events with surface veto 
(100% effective for primaries ≥ 1 PeV)
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CURRENT IceCube detector


