Radio detection of extensive air shower

Bärnfels 07th October 2010

Julian Rautenberg

Bergische Universität Wuppertal

Outline

- Physics of radio-emission of EAS
- Radio-detection of EAS
- Pierre Auger Observatory measuring cosmic rays
- AERA at PAO
 - Layout
 - Components
 - Software
- Summary

Extensive Air Shower

- Hadronic interaction
- Electromagnetic Cascade:
 - Isotrope fluorescence light
 - Focused Cerenkov light
- Disc of particles approaching ground
- Some reache ground (muons)

Surface Detector Arrays

1961: Linsley, towards highest energies

Extensive Air Showers

Linsley (checking for rattlesnakes) J.Rautenberg, Bergische Universität Wuppertal FIG. 1. Diagram of the Volcano Ranch 2-km² array, showing the location of the shower axis and measured densities in particles/m² for this event. No. 39565, The shielded detector was located very near the indicated main detector.

- 19 scintillation counter (~3 m²) on ~2 km²
- $N > 5x10^9 => E > 10^{19} eV$
- extragalactic origin likely !

Fluorescence Detector

15 Oct 1991: Fly's Eye event

- >200 billion particles at maximum !!
- integration => $E \sim (3.2 \pm 0.9) \ 10^{20} \ eV$
- $X_{max} \sim 815 \pm 60 \text{ g cm}^2 => \text{type}? anything ...$
- → there are ,,super-GZK" events!

Fly's Eye, Utah (successor: HiRes)

Radio detection theory: Geo-synchrotron

- In the shower electron-positron pair-production
- Charge bended in Earth magnetic field radiate geo-synchrotron radiation
- At wave-length larger than shower-disc coherent emission
- Emission is focused in beam-direction
- Foot-print size depends on distance to shower maximum
- Frequency spectrum rather smooth

Falcke & Gorham A.Ph. (2003) Huege & Falcke, A&A (2005)

J.Rautenberg, Bergische Universität Wuppertal

Geo-synchrotron simulation: REAS1

analytic parametrisation of emission model vertical, 10¹⁷ eV shower steeper decrease in Frequency for larger distances from core

Field-strength close to proportional to primary particle energy

Geo-synchrotron simulation: REAS2 vertical 10¹⁷ eV p-induced shower, 60 MHz

Huege, Ulrich, Engel, A. Ph. (2007)

Macroscopic Model – Olaf Scholten et al.

Charge-excess described by Askaryan:
Radiation from moving net charge usually reffered to as Askaryan effect, important in dense media
Radiation from change in net charge

👹 J.Rautenberg, Bergische Universität Wuppertal

Freq. vs. Time domain

 $=0 \rightarrow$ cancelation

Polarization: key to emission mechanism

Moving dipole polarization:

Depending on observer position. Charge excess polarization:

Depending on observer position. Pointing inwards

End-point contribution in REAS3 REAS3 REAS2

- Continuous radiation processes along the tracks, not at the end or the beginning of track
- e^{-}/e^{+} with v \approx c before and after being tracked analytically in the B-field

Straight track fragments joined by "kinks"

- Variation of \vec{v} in kink: discrete radiation process
- e^{-}/e^{+} with $\vec{v}=0$ before and after being tracked analytically \Rightarrow radiation due to creation/annihilation is considered

arXiv:1007.4146

T. Huege

REAS3 varying charge access

• Component in simulation has polar-type polarization-pattern

REAS3:

- Comparison of end-point contributions
 - vertical air shower with a primary energy of 10^{17} eV
 - observer distance of 100m
 - geomganetic angle 90°, horizontal magnetic field of 0.23G

Footprint comparison

👹 J.Rautenberg, Bergische Universität Wuppertal

Radio ohne Erdmagnetfeld

Bärnfels, 7th Oct 2010

👹 J.Rautenberg, Bergische Universität Wuppertal

Historical: Radio emission models

Year	Authors	Туре	Regime	Comment
1961/65	Askaryan	Cherenkov	frequency	charge excess
1966	Kahn & Lerche	Cherenkov & geomagnetic	frequency	transverse currents, dipole
1967	Colgate	geomagnetic	both	electromagnetic pulse
1967	Allan	geomagnetic	time	Feynman approach
1969	Fuji & Nishimura	Cherenkov & geomagnetic	frequency	combine approaches with <i>cascade theory</i>
1969	Castagnoli et al.	Cherenkov & geomagnetic	frequency	combine approaches with <i>Monte Carlo</i>
	•••	•••		T. Huege

The High Energy Universe observed with Radio

- Prospect: cost-effective, large-scale detector
- Particles: Charged CR, Gamma Rays, Neutrinos
- Targets: Air, Solids, Moon
- Theory: Geo-synchrotron, Askaryan
- Experiments:
 - Air : LOPES, CODALEMA, AERA @ AUGER,
 (Geo-synchrotron) LOFAR, R-ICETOP, 21CMA
 - Solids: ARIANNA, ANITA, ICERAY,
 (Askaryan) RICE, AURA, ARA, RAMAND, SALSA
 - Moon: (Askaryan)

LUNASKA, NuMoon (WRST/LOFAR/SKA), LORD, GLINT, RAMHAND

here: Radio-detection of extended air shower (EAS)

🐺 J.Rautenberg, Bergische Universität Wuppertal

Experimental results: LOPES

- For R&D ideal environment:
 - take a running experiment (KASCADE-Grande)
 - add new hardware (from new experiment, LOFAR)
 - have a look, how EAS look like (Nature 435, 2005)
- externally physics-triggered

understand radio-emission of extended air shower

Cosmic rays: spectrum

energy-range from KASCADE-Grande balance shower-rate and signal-height

J.Rautenberg, Bergische Universität Wuppertal

KASCADE-Grande & LOPES

Air-shower at 100 TeV — 1 EeV well calibrated

Inverted V-shape short dipole 40 — 80 MHz 10, later 30 channels mainly EW-polarisation triggered by KASCADE

🐺 J.Rautenberg, Bergische Universität Wuppertal

LOfar PrototypE Station

LOPES Collaboration

Dept of Astro	ophysics, Nijmegen,)(
The Netherla	inds	
L. Bähren	S. Buitink	
H. Falcke	J.R. Hörandel	
A. Homeffer	J. Kuijpers	
S. Lafèbre	A. Nigl	
K. Singh		
-		
1	DPEA	
14	0	
1*/	*	
	N N	
101		5
AI N		R.
<u>9</u> (N		131/
		1211
	AXXX	141
밀		
		1 "1
1001	- IX	21
10%		$\overline{\mathbf{r}}$
191		/ (
YA.	2×	<u> </u>
RO	K D - MIC	
	LIDSWI	
AL 11		
National Inst	of Physics and Nuc	lear
Engineering	Bucharest, Romania	a
LM. Brancus	B. Mitrica	- (
M. Petcu	A. Saftoju	
in totou	Th Outord	

IK, KIT, Gern	nany
W.D. Apel	J.C. Arteaga
A.F. Badea	K. Bekk
J. Blümer	H. Bozdog
K. Daumiller	P. Doll
R. Engel	M. Finger
A. Haungs	D. Heck
T. Huege	P.G. Isar
H.J. Mathes	H.J. Mayer
S. Nehls	J. Oehischläger
T. Pierog	H. Rebel
M. Roth	H. Schieler
F. Schröder	H. Ulrich
A. Weindl	
M. Womm WW	w.astro.ru.nl/lopes
IPE, KIT, Ger	many
T. Asch	H. Gemmeke
M. Helfrich	O. Krömer
L. Petzold	Ch. Rühle
M. Scherer	A. Schmidt

F. Cossavella	V. De Souza	
D. Huber	D. Kang	
M. Konzack	K. Link	
M. Ludwig	M. Melissas	
N. Palmieri		

Universität Si	egen, Germany
P. Buchholz	C. Grupen
D. Kickelbick	S. Over

LOPES: Cross-correlation

- beam-forming by adding signals with different time-offsets
- time-offsets determine geometry

😻 J.Rautenberg, Bergische Universität Wuppertal

LOPES: beam-forming

time-offset for cross-corelation:

- oriantation of plane
- curvature for focus

LOPES-30 EW polarised

-100

- Jan-Jul 2006
- High energy, N_{μ} >10⁵
- High inclination, $\theta > 50^{\circ}$
- beam-forming
- KASCADE-Grande reconstruction (316 events)
- 161 well radio-reconstructed
- 14 clear, coherent signals

LOPES: pulse-height correlation

 $= \mathbf{A} \cdot (1 + \mathbf{B} \cdot \cos \alpha) \cdot \cos \theta \cdot \exp(-\mathbf{R}/\mathbf{R}_{0}) \cdot (\mathbf{E}/10^{17} \, \mathrm{eV})^{\mathrm{V}}$ E_{et-EW} $A = 10.9 \pm 1.1$ B = 1.160.02 $v = 0.94 \pm 100$ R_o = 202 ± 64 m 0.03

Correlation of radio pulse-height with shower-variables (KASCADE-Grande reconstruction)

7.5

 $lg(N_{..})$

6.5

1.5

0.5

5.5

LOPES: lateral distribution

Astroparticle Physics 32 (2010) 294-303

Lateral distribution of the radio signal in extensive air showers measured with LOPES

W.D. Apel^a, J.C. Arteaga^{b,1}, T. Asch^c, A.F. Badea^a, L. Bähren^d, K. Bekk^a, M. Bertaina^e, P.L. Biermann^f, J. Blümer^{a,b}, H. Bozdog^a, I.M. Brancus^g, M. Brüggemann^h, P. Buchholz^h, S. Buitink^d, E. Cantoni^{e,i}, A. Chiavassa^e, F. Cossavella^b, K. Daumiller^a, V. de Souza^{b,2}, F. Di Pierro^e, P. Doll^a, R. Engel^a, H. Falcke^{d,j}, M. Finger^a, D. Fuhrmann^k, H. Gemmeke^c, P.L. Ghiaⁱ, R. Glasstetter^k, C. Grupen^h, A. Haungs^a, D. Heck^a, J.R. Hörandel^d, A. Horneffer^d, T. Huege^a, P.G. Isar^a, K.-H. Kampert^k, D. Kang^b, D. Kickelbick^h, O. Krömer^c, J. Kuijpers^d, S. Lafebre^d, P. Łuczak¹, M. Ludwig^b, H.J. Mathes^a, H.J. Mayer^a, M. Melissas^b, B. Mitrica^g, C. Morelloⁱ, G. Navarra^e, S. Nehls^{a,*}, A. Nigl^d, J. Oehlschläger^a, S. Over^h, N. Palmieri^b, M. Petcu^g, T. Pierog^a, J. Rautenberg^k, H. Rebel^a, M. Roth^a, A. Saftoiu^g, H. Schieler^a, A. Schmidt^c, F. Schröder^a, O. Sima^m, K. Singh^{d,3}, G. Toma^g, G.C. Trincheroⁱ, H. Ulrich^a, A. Weindl^a, J. Wochele^a, M. Wommer^a, J. Zabierowski¹, J.A. Zensus^f

LOPES: lateral distribution

👹 J.Rautenberg, Bergische Universität Wuppertal

Composition with Radio

- Measure energy at ca. 175 m
- Composition sensitivity at larger distances

J.Rautenberg, Bergische Universität Wuppertal

axis distance [m]

axis distance [m]

Pierre Auger Experiment in Argentina

Hybrid detection: surface- (SD) / fluorescence-detectors (FD)

Pierre Auger Observatory: Surface detector

Fluorescence-Detectors

Camera with Schmidtoptics and 440 PMTs 30° x 30° field of view only active in clear, moon-less nights

Pierre Auger Observatory: status

- 4th fluorescence building first light in April 2007
- Last tank has been deployed on Friday 13th June 2008

Radio at Pierre Auger Observatory 2 main motivations to go to PAO: Pampa Amarilla is radio-quiet Best EAS-detector, i.e. for high energies $E > 10^{18} eV$ (But magnetic field anomaly and rather high altitude)

Auger established a Radio Detection R&D Task Force Sep. 2006 data acquisition started with up to 4 test-setups After some problems (autonomy, power, ground-loops): Data exists now for three different data formats EAS have been measured --- they are in the data!

Radio Auger: People

듣 🗸 🔿 🗸 🕑 🍪 🚮 📕 🚔 🖼 http://aug	erradio.org/wiki/moin.cgi/who_we_are	🔹 🕨 💽 🛛 Google 🔍 💷 🗛		
	JulianRautenberg Preferences Logout	Search Titles Text		
Auger Radio	Auger Radio: who_we_are For Auger Members » Workshop_Subatech_2008 » Worksho	p_FZK_2007 » Public Information » who_we_are		
Auger Radio Public Information For Auger Members	For Radio Members Publications RecentChanges FindPage	HelpContents who_we_are		
Edit (Text) Edit (GUI) Comments Info Add Link Attachments More Actions:				

Ordered list of scientists, engineers, and students ranked according to location of home institute

Update July 11, 2007

- Aachen, III Physikalisches Institut A o
- Bonn, MPI für Radioastronomie, P. E
- Catania, INFN Sezione di Catania, F
- Columbus OH, Department of Physic
- Dwingeloo, ASTRON, H. Falcke
- Grenoble, LPSC, C. Berat, J. Chau
- Groningen, KVI, S. Harmsma, R. Me
- Karlsruhe, FZK-IK, J. Blümer, A. Ha
- Karlsruhe, FZK-IPE, T. Asch, H. Gei
- Karlsruhe, IEKP of the University of k
- Leeds, University of Leeds, P.D.J. C
- Lodz, Soltan Institute of Nuclear Stud
- Nantes, SUBATECH, S. Acounis, D
- Nijmegen, NIKHEF and IMAPP of the
- Orsay, IPN, E. Parizot, T. Suomijärv
- Orsay LAL, A. Cordier, S. Dagoret-
- Paris, APC, S. Collonges, B. Cour
- Paris, LPHNE, A. Letessier-Selvo
- Siegen, Department of Physics of the University of Siegen, I. Backer, I. Fleck
- Wuppertal, Department of Physics of the University of Wuppertal, J. Auffenberg, K.-H. Becker, K.-H. Kampert, J. Rautenberg

J.Rautenberg, Bergische Universität Wuppertal

Radio at Auger: 2 test-sites

- measurements at different locations in the field
 - accessibility
 - power provided
 - noise
- additional SD-tanks to lower energythreshold
- about 1 Event with E>10¹⁸ eV

Auger test-site at Ballon-Launching Site:

Auger test-site at Ballon-Launching Site:

Auger coincident events

- Externally (Szintillator) triggered events
- 313 events in coincidence with Auger (GPS-time matching)
- up to 1.5 km distant
- energy-threshold ~ 0.4 EeV

Auger test-site at Central Laser Facility:

• difficult accessible

CLF: event analysis

- 25 coincidences with Auger matched by time-stamp
- autonomous DAQ!
- No 3-fold event:
 - dead time
 - variable noise rate
- Auger-events:
 - compatible with Auger density-map
 - show south predominance

J.Rautenberg, Bergische Universität Wuppertal

Background

- BG measured with simple monopole
- Below 30 MHz strong rise of galactic noise
- In addition day-night ionospheric variation
- narrow-band emitters above 80 MHz

Transient background

trigger at ~ bin 500 D42 030 East/West, CH0 25.09.06 23:53:41.6281596; run=21, event id=701653 800 ADC value N/S Pol. 600 400 200 п -200 - 400 -600 - 800 350 400 45f 550 650 700 12.5 / ns (interpolated) D42_090_East/West, CH0 25.09.06 23:53:41.6281596 run=21, event id=701653 800 ADC value 600 400 200 -200 - 400 -600 . 800 400 450 550 650 700 600 time 12.5 / ns (interpolated) D42_CTR_East/West, CH0 25.09.06 23:53:41.6281596, un=21, event_id=701653 1500 ADC value 1000 500 - 500 -1000 -1500 650 12.5 / ns (interpolated) time

Coincidence: 16 bins

Bärnfels, 7th Oct 2010

J.Rautenberg, Bergische Universität Wuppertal

Intelligent trigger: cut-off filter

• Narrow band noise emitters: cut out in frequency domain

- radio-emission of shower: smooth in frequency
- but for triggering needed <u>online</u>
- cut-off too complicated: calculate mean, cut backwards

Intelligent trigger: shape analysis

- Try to remove multiple spikes by shape analysis
- Crossings of two threshold levels in defined time intervals

Radio Auger: Phase 2

• Phase 1a (2007): 3 double-pol. antenna, baseline ~ 100 m, hardware and trigger problems Phase 1b (2008): up to 10 antenna, baseline ~ 400 m, advanced hardware and trigger strategies Phase 2 (>2009): \sim 140 antenna, 20 km² baseline \sim 150-380 m, self-trigger, autonomous detector, enhancement area close to Coihueco (AMIGA, HEAT)

autonomous radio detection (at E>10¹⁸ eV) super-hybrid detector (surface, fluorescence, radio)

J.Rautenberg, Bergische Universität Wuppertal

• AMIGA (Infill)

👹 J.Rautenberg, Bergische Universität Wuppertal

🐺 J.Rautenberg, Bergische Universität Wuppertal

- LPDA Antenna
- GPS-Antenna
- Comm-Antenna
- Solar Panels
- Electronic Box

Test of Antennas at Nancay

Galaxy visible ?

Intermodulation ?

Variation of galactic signal with time ?

Test bench with: Small Black Spider Butterfly LWDA

👹 J.Rautenberg, Bergische Universität Wuppertal

Test of Antennas at Nancay

- Broad Band: ~28 to ~80 MHz
- Galactic Back-Ground clearly visible

Digital Front-End Cards

- Cyclone FPGA
- Soft-Core NIOS
- Lot's of communications
- 2 high/low gain channels

Test of Assembled Hardware Components

- Central Radio Station
- Data-acquisition
- Workshop
- Weather-station with E-Field////

Communication for first 25 Station via fibre

Heat

Antenna installation finished

Summary

- Radio-emission of extended air shower described by geo-synchrotron effect
- LOPES-measurements to understand general amplitudedependence, LDF and polarisation
- Auger started R&D in radio-quite Pampa Amarilla, measure at E>10¹⁸ eV, super-hybrid
- Need intelligent self-trigger
- Construction for 20 km² array with ~160 antenna ongoing
- First 25 Stations ready

LOPES-30 EW polarised

- Jan-Jul 2006
- High energy, N_{μ} >10⁵
- High inclination, $\theta > 50^{\circ}$
- beam-forming
- KASCADE-Grande reconstruction (316 events)
- 161 well radio-reconstructed
- 14 clear, coherent signals

Transient background

Power-line producing Spikes?

