Analysis

Prof. Dr. Martin Erdmann RWTH Aachen University 9-Oct-2010

Astroparticle Tasks

Theory

- Acceleration mechanism
- Sources
- Propagation
- Magnetic Fields

Experiment

- UHECR detectors
- UHECR kinematics
- Data Distributions
- Observables

High Energy Physics

Cla

5

e U S

Interfa

Theory

- Differential cross sections
- Monte Carlo Event Generators

Experiment

- Accelerators
- Detectors
- Propagation
- Magnetic Fields

Distributions of Scattering Angle

Mandelstam Variables

$$\hat{s} = 4 \cdot E_1 \cdot E_2$$
$$\hat{t} = -\frac{\hat{s}}{2} (1 - \cos \hat{\theta})$$
$$\hat{u} = -\frac{\hat{s}}{2} (1 + \cos \hat{\theta})$$

QCD: parton cross sections -> angular distributions

$$\frac{\mathrm{d}\,\hat{\sigma}}{\mathrm{d}\,\hat{t}} = \frac{|M|^2}{16\,\pi\,\hat{s}^2}$$

Calculation of yp Jet Cross Sections

Blue marked ingredience: influence rate Red: angular distributions are solid QCD predictions

Proton & Photon Structure

$$F_2(x,Q^2) = oldsymbol{a}(x) \left[\ln \left(rac{Q^2}{\Lambda^2}
ight)
ight]^{oldsymbol{\kappa}(x)}$$

Proton sea quarks

Many parton processes possible:

Direct / Resolved photon processes: Resolved γ angular distribution expected to be more steep.

Direct/Resolved Photon Interactions

Reconstruct initial Parton Momenta

Erdmann, RWTH Aachen University

Separate Direct/Resolved Photon Events

Measured Angular Distributions

Erdmann, RWTH Aachen University

Atlas: Jet Cross Section

Good description of the NLO QCD calculations

CMS: Search for New Heavy Particles

Simulation

Measurement

No resonance (yet)

Jet 2 p.: 802 GeV

804 GeV

Atlas: Dijet Angular Distributions

no sign (yet) of heavy particle decaying into two jets

Jets from Air Showers?

Atlas: Searches for Supersymmetry

H1: Underlying Event Energy

Multiple Parton Interactions

H1: Multiple Parton Interactions

Uncorelated additional interactions next to the hard parton scattering

CMS: Underlying Event

PYTHIA 6.4 tune p_T -ordered parton showers, new Multiple Parton Interaction model

Charged energy per unit rapidity-azimuth $E_{UE} \simeq 1 \text{ GeV}$

Astroparticle Physics Analysis

Advanced Autocorrelation Method

Background typically (naive)

Analysis Flow

Universe of Random Walk and coherent deflection

 $\Delta \ell \simeq C_{CoherentField} \left(\frac{10^{18} \text{ eV}}{E} \right) \qquad \begin{array}{c} \mathsf{C}_{Coherent \ Field} = 10 \ \text{rad, for 60 EeV UHECR max.} \\ \text{deflection 10deg, average deflection 7.5deg} \end{array}$

Energy-Energy-Correlation "Measurement"

Interpretation of Measurement

Calculate many universes:

Random Magnetic field C

each emits 10000/N UHECR

• **N** sources

reject hypothesis in red region >5 σ

Sucessful reconstruction of universe C_{Random Field}=10 rad, N_{Source}=10

Systematic Check

Without knowing the sources: method constrains phase space of the parameters of a universe model

Erdmann, RWTH Aachen University

Astroparticle Physics Analysis

Simulation of More Realistic Universes

10 EeV Proton

Trajectory calculated with CRPropa

Constrained simulation of structure formation reproduces local universe

K. Dolag et. al. Journ. Cosm. and Astropart. Phys. 2005

Preliminary

Gero Müller Christoph Genreith Tobias Winchen David Walz Peter Schiffer Martin Erdmann

see contributed talk by Gero Müller

Erdmann, RWTH Aachen University

110 Mpc

Regular Grid ~100 kpc

V/SPA**Visual Physics Analysis**

Graphische Entwicklungsumgebung für Physik Analysen

Astroteilchenphysik Hochenergiephysik

Paradigmen-

- Objektorientiert
 Datenflussbasiert
 Grafisch

Analysis Designer

Data Browser

Application Astroparticle Physics

Excecute

Analysis

ROOT

32

Team Work

M. Brodski, M. Erdmann, R. Fischer, A. Hinzmann, D. Klingebiel, M. Komm, J. Lingemann, **Gero Müller**, J. Steggemann, T. Winchen

http://vispa.sourceforge.net

Summary

- Parton Scattering correctly predicted by QCD
- Data Analysis at LHC with enormous progress
- Information on Cosmic Magnetic Fields through Correlations
- You may want to try VISPA for developing your analysis