Nuclear Astrophysics

- Observing Nuclei in Cosmic Sites -

by Roland Diehl MPE Garching

Astroparticle School, Bärnfels (D), 06 Oct 2010

Outline

- * Theme of my lecture, the context, the role of astronomy
- * How cosmic messengers of nuclear-physics impacts are obtained
- * What we learned from "astronomical constraints"

Nuclear Physics in Cosmic Sources

• Nuclear Physics in Cosmic Environments - where is it relevant?

☆ Nuclear Energy Release

- Structure of Stars
- Dynamics of Explosions

☆ Nucleosynthesis

- Elemental Abundances in Stars and in ISM (SNR), IGM
- Radioactive Isotopes

☆ Characteristic Nuclear Radiation

- Nuclear Excitation (Emission/Absorption Lines)
- Radioactive Decay

=>

Nature of Cosmic Sources, Cosmic Processes Search for New Phenomena

Energy (MeV

Roland Diehl

Astroparticle School, Bärnfels (D), 06 Oct 2010

What is a massive star?

Stars are gravitationally confined thermonuclear reactors

Each time one runs out of one kind of fuel, contraction and heating ensue, unless degeneracy is encountered.

For a star over 8 M_© contraction and heating continue until a Fe core is made

Gravitational collapse ensues, after no energy-providing fuel is left

ourtesy SEWoosley

• Nuclear Physics in Cosmic Environments - where is it relevant?

☆ Nuclear Energy Release

- Structure of Stars

- Nuclear Physics in Cosmic Environments where is it relevant?
 - Structure of Neutron Stars

 \rightarrow Mass-Radius Relation $\leftarrow \rightarrow$ Composition & State of High-Density Matter

• Nuclear Physics in Cosmic Environments - where is it relevant?

Example: C Fusion (12C+12C)

☆ The Importance of Low-Energy Nuclear Resonances

^Cmulti-point ignition towards runaway after 10⁴y 'smoldering'
Creaction rate vs. T,ρ

(a) 800 s; (b) 3200 s; (c) 3420 s; (d) 7131.79 s

• Nuclear Physics in Cosmic Environments - where is it relevant?

Astroparticle School, Bärnfels (D), 06 Oct 2010

The Quest: Origin of the Elements

☆ What is the Origin of the Variety of Cosmic Elements...

- @ at its presently-observed
 variety (here: solar)
- with abundances spanning 12 orders of magnitude,
- ... and revealing remarkable sub-structure

Abundances: An Astronomical Measurement

☆ Relevance of Knowledge about Cosmic Abundances:

Constraints for Nucleosynthesis

- Nuclear Reactions in Cosmic Environments
- Astrophysical Conditions in Nuclear-Burning Sites

Constraints for Evolutionary Processes in the Universe

- Formation of Stars and Stellar Assemblies...Galaxies
- Enrichment of Cosmic Gas Supplies with Nucleosynthesis Products

Cosmic Chemical Evolution

Cosmic Nucleosynthesis

- Big Bang Nucleosynthesis
 - * Extrapolations of Metallicity Evolution Data
 - ☆ Cosmological-Model Consistency Validation z~1000
- First Stars:

z~20

- ☆ Gamma-Ray Bursts
- ☆ Quasar Absorption Lines
- 🖈 Abnormal Metal-Poor Stars
- Early Stellar Generations z~3...0.1
 - ☆ High-Redshift Galaxies' Metallicities
 - ☆ Metal-Poor Stars
 - ☆ Intergalactic Gas (WHIM, Clusters)
 - ☆ SNIa, GRBs
- Current Nucleosynthesis
 - Nucleosynthesis Sources
 (Massive Stars, Supernovae, Novae)
 - ☆ Recent Stellar Generations, ISM

Astroparticle School, Bärnfels (D), 06 Oct 2010

One of the Key Tools of Astrophysics:

Where do specific atomic nuclei and their abundance originate?

Astroparticle School, Bärnfels (D), 06 Oct 2010

• Nuclear Physics in Cosmic Environments - where is it relevant?

☆ Nuclear Energy Release

- Structure of Stars
- Dynamics of Explosions

☆ Nucleosynthesis

- Elemental Abundances in Stars and Gas
- Radioactive Isotopes

- Nuclear Physics in Cosmic Environments where is it relevant?
 - * Characteristic Nuclear Radiation
 - Nuclear Excitation Lines
 - Radioactive Decay
 - ^{Selativistic} Particle Acceleration → CRs
 - Solar Flares
 - Interstellar Shocks
 - AGN

© Current Nucleosynthesis Source Locations

• Nuclear Physics in Cosmic Environments - where is it relevant?

☆ Nuclear Energy Release

- Structure of Stars
- Dynamics of Explosions

☆ Nucleosynthesis

- Elemental Abundances in Stars and ISM (SNR), IGM
- Radioactive Isotopes

* Characteristic Nuclear Radiation

- Nuclear Excitation (Emission/Absorption Lines)
- Radioactive Decay

=>

Nature of Cosmic Sources, Cosmic Processes Search for New Phenomena

Energy (MeV

Nuclear Reactions in Cosmic Environments

* Tunneling Reactions of Thermal-Particle Populations

Example: Measuring H-Burning Reactions

Extrapolations for Solar Energies -> Solar v's

Key Nuclear-Physics Questions

- ☆ What is the Nature of the Nuclear Force, as it Binds Known Nuclei?
- ☆ What is the Origin of Simple Patterns found in Nuclear Structure?
- ☆ What is the Composition and Structure of Neutron Stars?
- ☆ What is the Origin of Cosmic Elements?
- ☆ What are the Nuclear Reactions that Drive the Evolution of Stars and Stellar Explosions?

adapted from Dean, PT 2007

• Nuclear Physics in Cosmic Environments - where is it relevant?

☆ Nuclear Energy Release

- Structure of Stars
- Dynamics of Explosions

☆ Nucleosynthesis

- Elemental Abundances in Stars and ISM (SNR), IGM
- Radioactive Isotopes

* Characteristic Nuclear Radiation

- Nuclear Excitation (Emission/Absorption Lines)
- Radioactive Decay

=>

Nature of Cosmic Sources, Cosmic Processes Search for New Phenomena

Energy (MeV

Messengers from Cosmic Objects & Processes

★ Material Samples
 ☆ Meteorites
 ☆ Cosmic Rays
 ☆ Neutrinos

\star Electromagnetic Radiation

☆ Radio / sum-mm / IR / optical / UV / X-rays / Gamma-Rays

* Gravitational Waves

Astroparticle School, Bärnfels (D), 06 Oct 2010

Astronomical Observations throughout the e.m. Spectrum

Astronomy across the Electromagnetic Spectrum

☆ "Nuclear" Astronomy:

- Diagnostics of high-energy processes MeV...100 MeV
- Nucleosynthesis Probe
- Unique / Direct / Complementary
 - Intensity not dependent on ionization states, temperature
 - No attenuation/occultation issues

Gamma-Rays for Cosmic-Isotope Measurements Special Characteristics:

Gamma-Rays for Cosmic-Isotope Measurements Special Characteristics:

Nucleosynthesis Study with Gamma-Rays -> Physics / Processes at/inside the Nucleosynthesis Site

Isotope	Mean Lifetime	Decay Chain	$^{\gamma}$ -Ray Energy (keV)
⁷ Be	77 d	⁷ Be → ⁷ Li*	478
⁵⁶ Ni	111 d	$^{56}\text{Ni} \rightarrow ^{56}\text{Co}^* \rightarrow ^{56}\text{Fe}^* + e^+$	158, 812; 847, 1238
⁵⁷ Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122
²² Na	3.8 у	22 Na \rightarrow 22 Ne* + e ⁺	1275
⁴⁴ Ti	89 y	⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e ⁺	78, 68; 1157
²⁶ Al	1.04 10 ⁶ y	$^{26}\text{Al} \xrightarrow{26}\text{Mg}^* + e^+$	1809
⁶⁰ Fe	2.0 10 ⁶ y	${}^{60}\mathrm{Fe} \rightarrow {}^{60}\mathrm{Co}^* \rightarrow {}^{60}\mathrm{Ni}^*$	59, 1173, 1332
e*	10 ⁵ y	$e^++e^- \rightarrow Ps \rightarrow \gamma\gamma$	511, 511

511 keV, ⁷Be -> Novae
 -> p-Captures, β⁺ Decays
 -> ¹⁹F Production...

²⁶Al -> Reaction Path Details in Stars/ SNe, v-Process
-> Metal/Fe Ratio, Si/Fe

⁴⁴Ti, ⁵⁶Ni -> Most Stable Isotopes ⁵⁶Ni/
⁴He, Freeze-Out of NSE
-> Metal/Fe Ratio, Heavies/Fe

Gamma-Ray Astronomy: Instruments

Photon Counters and Telescopes

Achieved Sensitivity: ~10⁻⁵ ph cm⁻² s⁻¹, Angular Resolution ≥ deg Limitation: Overwhelming Instrumental Background → Need Discriminating (& Imaging) Information per Event Astroparticle School, Bärnfels (D), 06 Oct 2010

Gamma-Ray Astronomical Telescopes: Interaction of HE photons with matter

Gamma-Ray Astronomical Telescopes: Interaction of HE photons with matter

The Imaging Compton Telescope

Compton Scattering: A Coincidence Technique

INTEGRAL: Ge γ -Spectrometry in Space!

17 October 2002: 06:41 Launch from Baikonur / Kasachstan

Summer 2008:

Healthy Spacecraft & Instruments Mission Operations till 2012+ SPI: Coded-Mask Telescope 15-8000 keV Energy Resolution ~2.2 keV @ 662 keV Spatial Precision 2.6° / ~2 arcmin Field-of-View 16×16°

Achievements:

²⁶Al in our Galaxy: Image and Spectrum

Capabilities for Nuclear Astronomy

What Did We Achieve?

* Comments on Science Results, and How They Have Been Obtained

Astrophysics and Nuclear Physics

• Nuclear Physics in Cosmic Environments - where is it relevant?

☆ Nuclear Energy Release

- Structure of Stars
- Dynamics of Explosions
- ☆ Nucleosynthesis
 - Elemental Abundances in Stars and ISM (SNR), IGM
 - Radioactive Isotopes

☆ Characteristic Nuclear Radiation

- Nuclear Excitation (Emission/Absorption Lines)
- Radioactive Decay

=>

[©]Nature of Cosmic Sources, Cosmic Processes ¹⁰⁻⁶ [©]Search for New Phenomena

Roland Diehl

Following Stellar Evolution

Rauscher; Heger 2003

☆ The "Kippenhahn" Diagram: Could be Very Different!

Astroparticle School, Bärnfels (D), 06 Oct 2010

Stellar Structure Complexities

* Stellar Rotation Incurs Structural Changes!

Massive-Star Structure: Issues

Synthesis of ²⁶Al in Stars and Supernovae

☆ Massive Star Burning

Physics:

- Stellar Evolution Phases
- Mass Loss
- Convection & Mixing
- Intermittent Nuclear-Burning Phases

☆ Supernova Explosive Nucleosynthesis

☆ Physics:

Explosion Trigger

Shock Structure and Mixing

²⁶Al in our Galaxy: Ejecta from Massive Stars

Using the ²⁶Al Line to Characterize the Galaxy

-> Diehl et al., Nature 2006

☆ Measured Gamma-Ray Flux
 ☆ Galaxy Geometry

☆ ²⁶Al Yields per Star
 ☆ Stellar Mass Distribution

☆ Gas Mass in Galaxy

Isotopic

= 8.4 10⁻⁶

Ratio

> ²⁶Al Mass in Galaxy = 2.8 (±0.8) M_{\odot}

⁶⁰Fe Emission is Seen from the Galaxy

☆ Gamma-ray Signal Now Beyond 'Hints'/'Limits' (5σ)
^{G™}⁶⁰Fe/²⁶Al Emission Ratio ~15%

⁶⁰Fe: Why is it Interesting?

3.8 10^{6} y 60 Fe $\rightarrow ^{60}$ Co* $\rightarrow ^{60}$ Ni* **59**, 1173, 1332

⁶⁰Fe is Produced through Successive Neutron Captures

n Capture Astrophysics...(->s-Process...)

☆ Massive Stars are Likely Sources of ⁶⁰Fe

… the MAIN Agents of Cosmic Evolution

☆ ⁶⁰Fe has been Detected in ☞ a Pacific-Ocean Crust ☞ Solar-System Meteorites ☞ the Interstellar Medium

Radioactive Dating of Different Astrophysical Events!

⁶⁰Fe Production in (²⁶Al-producing) Stars

☆ No Production during ANY Central-Burning Phase ☆ Need Convection plus n Source

☆ Explosive-Burning Contributions Negligable ☆ Ejection by Supernova Explosion

Astroparticle School, Bärnfels (D), 06 Oct 2010

⁶⁰Fe Production in Stars: Issues for Nucleosynthesis Environment

☆ ...and: How Do Other Reactions Shape the Structure of the Star $(3\alpha, {}^{12}C(\alpha, \gamma))$

Production of ⁶⁰Fe and ²⁶Al in Massive-Stars

-2.7

☆ Ratio Differs with Progenitor Mass!

-3.0 Fe -3.3 -3.6 -3.9 Log₁₀(Yield(M_o)) 4.2 4.5 Total (Schwarz.) 4.8 O-Total (Ledoux) -5.1 Explosive A-C conv. shell -5.4 He conv.shell (Schwarz.) -5.7 He conv.shell (Ledoux) -6.0 10 20 30 40 50 70 80 90 100 110 120 60 M(M_) -2.7 -3.0 26 ΆΙ -3.3 -3.6 -3.9 Log₁₀(Yield(M_o)) 4.5 -4.8 - Total -5.1 --- Explosive -5.4 -A-C/Ne conv. shell Wind -5.7 -6.0 10 20 90 100 110 120 30 40 50 70 80 60 M(M_)

Limongi & Chieffi (2006)

Timmes et al. (1995) Astroparticle School, Bärnfels (D), 06 Oct 2010

Roland Diehl

Revised/Updated/New Massive-Star Nucleosynthesis

⁶⁰Fe from Massive Stars: Observations vs. Theory

☆ How Do Models Agree with Data on ⁶⁰Fe/²⁶Al y-Ray Intensity Ratio?

\Rightarrow Issues:

Stellar Models Nuclear Physics Gamma-Ray ⁶⁰Fe Signal (Intensity; Galaxy Regions)

⁶⁰Fe/²⁶Al Line Ratio Diagnostics

Astrophysics and Nuclear Physics

• Nuclear Physics in Cosmic Environments - where is it relevant?

☆ Nuclear Energy Release

- Structure of Stars
- Dynamics of Explosions
- ☆ Nucleosynthesis
 - Elemental Abundances in Stars and ISM (SNR), IGM
 - Radioactive Isotopes

☆ Characteristic Nuclear Radiation

- Nuclear Excitation (Emission/Absorption Lines)
- Radioactive Decay

=>

[©]Nature of Cosmic Sources, Cosmic Processes ¹⁰⁻⁶ [©]Search for New Phenomena

Roland Diehl

Neutron Stars

☆ Birth at T~10 MeV, Rapid Cooling to < MeV -> "cold" nucleons

Neutron Stars and Properties of Nuclear Matter

• Key Issue:

How Densely-Packed are Nucleons inside Neutron Stars?

- Sizes of NS (M-R)
- Thermal Properties (Cooling)
- Moments of Inertia (Spin, Glitches, Braking, QPOs)

Neutron Star Observables

- Magnetospheric Emission
 - ☆ Non-thermal; magnetosphere as particle accelerator
- Thermal Emission
 - ☆ Radiative Cooling, T~X-rays
 - ☆ Heating from Internal Energy
 - * Heating from Matter Accretion
 - ☆ Heating from Nuclear Burning
- Temporal Modulations
 - ☆ NS Spin
 - * Accretion Flow Irregularities
 - ☆ Nuclear Ignition
 - ☆ Structural Rearrangements
 - ☆ Relativistic Distortions

Astrophysics and Nuclear Physics

- Nuclear Physics in Cosmic Environments where is it relevant?
 - ☆ Nuclear Energy Release
 - Structure of Stars
 - Dynamics of Explosions
 - ☆ Nucleosynthesis
 - Flemental Abundances in Stars and ISM (SNR), IGM
 - Radioactive Isotopes
 - ☆ Characteristic Nuclear Radiation
 - Nuclear Excitation (Emission/Absorption Lines)

 $\equiv >$

- Radioactive Decay

Latest Stage of Stellar Evolution: Supernovae

☆ Nuclear Fuel Exhausted
☆ Gravitation Leads to 'Extreme' Stars
☆ The "Remains" are Spread

Astroparticle School, Bärnfels (D), 06 Oct 2010

Core Collapse-Supernovae: The Model

Empirical / Parametrized Models for Explosion (Explosion Energy, Mass Cut)

Nuclear Physics: • v Luminosities • PNS EoS, Pasta Phases • Nucleosynthesis • Shock Region • Explosive

Explosion Mechanism = Competition Between Infall and Neutrino Heating
 3D-Effects Important for Energy Budget AND Nucleosynthesis

Astroparticle School, Bärnfels (D), 06 Oct 2010

Roland Diehl

Nucleosynthesis in CC-Supernova Models

- Location of Ejecta/Remnant Separation
- 44 Ti Produced at r < 10³ km from α -rich Freeze-Out, => Unique Probe (+Ni Isotopes)

Astroparticle School, Bärnfels (D), 06 Oct 2010

Core-Collapse SN Nuclear Reactions -> 44Ti

• Why are ⁴⁴Ti Gamma-Rays Interesting?

Complex Nuclear-Reaction Dynamics

A Specific Isotopic Abundance as "Calibration Point"

⁴⁴Ti Decay in a Young SNR

- ☆ ⁴⁴Ti Decay: e Capture -> Ionization!?!
 - E_{ion,K}=6.6 keV, E_{ion,L}=1.6 keV
- ☆ SN Composition Profile: Fe & Ti Similar
- ☆ Fe/Ti Clump Ionization by Reverse Shock
- ☆ ⁴⁴Ti Decay Rate Modifications:
 - Inhibit Early, -> Enhance Later (wrt ⁴⁴Ti Mass / Exponential Decay)
 - ~0.5 @ Days 50...200
 - ~1.5-2.5 @ Days 250...400
- ☆ Cas A ⁴⁴Ti Mass ~ as Predicted by Theory?

⁴⁴Ti γ -rays from Cas A

Velocity Distributions of Inner cc-SN Ejecta

Inner Explosions' Convection Seeds Rayleigh-Taylor Instabilities at Interfaces to O and He Shells

Macrosopic Matter Clumps in Ejecta at a Range of Velocities

Steep He/H Shell Transition Homogenizes this in case of SNII

Hammer, Janka, & Müller (2010)

Astroparticle School, Bärnfels (D), 06 Oct 2010

⁴⁴Ti Ejecta Velocities

Fig. 4. Cassiopeia A spectrum at 1157.0 keV combining SE and ME2; red solid curve is the fit of a Gaussian shape.

Fig. 5. χ^2 -curve for the total line width (including intrinsic and instrumental broadening), assuming a line flux of 2.5 ×10⁻⁵ ph cm⁻² s⁻¹ and no position shift.

☆ High-Energy Line Not Seen with SPI
☞ Broadened, so Dissappearing in Bgd

* Estimate Doppler Broadening:

Astrophysical Line Width >3.2 keV
-> 500 km s⁻¹ (lower v limit)
Martin et al. 2009

☆ ⁴⁴Ti Ejecta from Turbulent Zones Well <u>Outside</u> Mass Cut

☆ NuStar Mission 2011+: X-ray Imaging

C/O/Ni surfa

The Sky in ⁴⁴Ti Gamma-Rays

The et al. 2006

Roland Diehl

"Normal" Core Collapse Supernovae (?)

Sky Regions with Most Massive Stars are ⁴⁴Ti Source-Free (COMPTEL, INTEGRAL)

Need Event Statistics, ⁴⁴Ti Spectra

Astrophysics and Nuclear Physics

- Nuclear Physics in Cosmic Environments where is it relevant?
 - ☆ Nuclear Energy Release
 - Structure of Stars
 - Dynamics of Explosions

ANucleosynthesis

- Elemental Abundances in Stars and ISM (SNR), IGM
- Radioactive Isotopes
- ☆ Characteristic Nuclear Radiation
 - Nuclear Excitation (Emission/Absorption Lines)
 - Radioactive Decay

=>

Nature of Cosmic Sources, Cosmic Processes ^A
 Search for New Phenomena

Astroparticle School, Bärnfels (D), 06 Oct 2010

Astroparticle School, Bärnfels (D), 06 Oct 2010
Current Galactic Nucleosynthesis

Evolving Abundances of Massive-Star Groups: Cygnus

Time [Myr] Astroparticle School, Bärnfels (D), 06 Oct 2010

٠

1 107

٠

1 102

The Complex Interstellar Medium

rion

☆ The ISM is a Highly-Dynamic Non-Equilibrium[®] Medium

- 2(3)-Phase Equilibrium Model is Obsolete (even NEI!)
- Need Multi-Band & Messenger Observations (not only simulations!)

☆ How do Massive Stars and SNe feed the ISM[®] with

- Turbulent Energy?
- Seed Matter for Subsequent Star Formation?

s⁻¹ MeV)

Flux $(10^{-4} \text{ cm}^{-2}$

×

°⊊1

emissio

~3×10"cm-2

🔊 X-ray bubble

Eridion Bubble

COMPTEL

O EGRET (disk)

□ COMPTEL (disk)

1000

10000

EGRET

COS-B

100

Energy (MeV)

10

IN THE A

T= 2.1 x 10⁶ K

- What is the Role (and Morphology) of Magnetic Fields?
- ★ Exploit γ-rays from
 Cong-lived ISM
 Radioactivities
 - Nuclear Excitation Lines
 - CR Interactions, e+

Astronomy with ²⁶Al: The Inner Galaxy

How Wide is the Celestial ²⁶Al Line?

☆ SPI Response * Celestial Line -> Actually-Observed Line Feature

- ☆ Fit Expected Spectral Signature to the Sky&Bgd-Fitted Spectral Signal
- ☆ Perform Statistical Uncertainty Analysis (Monte Carlo Markov Chain)

-> Data up to mid 2006; W.Wang et al., 2009 Line Width Probability Distribution by K.Kretschmer

INTEGRAL/SPI & Annihilation of Positrons in the Galaxy

INTEGRAL / SPI:

- Extended Emission (~8-10°) at 1.01 (±0.02) 10⁻³ ph cm⁻² s⁻¹
- Ps Cont.: 4.3 (±0.3) 10⁻³ ph cm⁻² s⁻¹ f_{Ps} 0.967 ±0.022
- . Corresponds to ~ 2 10^{43} e⁺ s⁻¹

The High-Energy Sky (hard-X to HE y-rays)

Roland Diehl

What are the Positron Sources??

* Identify Each of the KNOWN Types of Sources

- Individual Sources?
- Comphology of Galactic-Disk Emission

Assemble a Sky Model for the Known Integrated Emission, e.g.:

(P

Include Propagation Physics in Models and in Analysis

- Positron Annihilation
- ²⁶Al Radioactivity

☆ See if Significant Residual (bulge) Emission Remains
 ☆ An Unexpected / New Type of Sources? (e.g. DM?)

courtesy I. Moskalenko

Summary: Gamma-Rays from Cosmic Radio-Isotopes

Key Radio-Isotope Data from Novae & SNIa Need Luck
Novae <kpc, SNIa < 5 Mpc</p>

Inner Ejecta from a CC-SN (Cas A) -> Velocity Constraint Cas A a Rare CC-SN?

- ☆ The Present-Day Massive-Star Population of the Galaxy is Studied through ²⁶Al and ⁶⁰Fe
 - Isotopic Ratio as a Stellar-Structure Diagnostic
 - Gamma-Ray Spectroscopy -> Hot ISM around Massive-Star Groups
 - Galactic Structure & Nucleosynthesis Regions

Roland Diehl

Astronomy, Astrophysics and Nuclear Physics

• Nuclear Physics Applications in Cosmic Environments:

☆ Nuclear Energy Release

- Structure of Stars
- Dynamics of Explosions

☆ Nucleosynthesis

- Elemental Abundances in Stars and ISM (SNR), T
- Radioactive Isotope

* Characteristic View Station

- Nuclear Excitation (Emission/Absorption Lines)
- Radioactive Deco

=>

Nature of Cosmic Sources, Cosmic Processes Search for New Phenomena

