

Untersuchung der Atmosphärenmodelle bei MAGIC

von Marijke Haffke Universität Dortmund

Gliederung

I. Einleitung

- Kosmische Strahlung
- MAGIC

II. Atmosphärenmodelle

- CORSIKA
- MSIS
- Vergleich
- Eigene Atmosphärenmodelle
- III. Monte Carlo
- IV. Ausblick
- V. Zusammenfassung

MAGIC Highlights of the First Year (Folie: M.Teshima)

I. Einleitung

MAGIC

- breite Analyse Software
- u.a. zur Generation von Monte Carlos
- zur Generation von Luftschauern: CORSIKA
 - verwendet Atmosphärenmodelle in der Schauer-Simulation

Ziel Diplomarbeit:

=> Verbesserung der Atmosphärenmodelle und Untersuchung ihrer Auswirkungen

13.5		RUNNR	420				
		PRMPAR	1			particle type	
$\mathbf{P}\mathbf{C}$		ERANGE	30.	300.		energy range	
		EVINR	1			number of first snower event	
			1			number of snowers to generate	
		ESLOPE	-2.6	<u>^</u>		slope of primary energy spectrum	
			20. 2	0.		range of zenith angle (degree)	
			. U.	h		range of azimuth angle (degree)	
• •	°Ocr			J.		data directory managed	
• 0	,021	DIRECT	results	5/		data directory managed	
			1	0	0	sood values managed by deemen	
			ו כ	0	0	seed values managed by daemon	
• •	imu	SEED	2	0	0	seed values managed by daemon	
• 5	mnu		2200 5	=2	0	observation level (in cm)	
			200.E	- <u>-</u> :2		outer radius for NKG lat dens determ	
		ARRANG	0			rotation of array to north	
• R	Rodic	FIXCHI 0	0.		(starting altitude (g/cm**2)	
	Curt	MAGNET	29.5	23.0	•	magnetic field at LaPalma	
		HADFLG	0 0 0	000)	flags for hadr, interaction	
		ECUTS	0.3 0.3	3 0.02	0.02	e.cuts: had. mu. elec v fot	
• A	tmc	MUMULT	Т			muon multiple scattering angle	
		LONGI	T 10.	ΤF		longit.distr. & step size & fit	
		MAXPRT	1			max. number of printed events	
		ECTMAP	1.E4			cut on gamma factor for printout	
		STEPFC	0.1			mult. scattering step length fact.	
		DEBUG	F 6 F	10000	000	debug flag and log.unit for out	
• ()uell	CWAVLG	290.	600.		Cherenkov wavelength band	
		CSCAT	1 0.	20	000.	scatter Cherenkov events	
⇒b	ered	CERSIZ	1.			bunch size Cherenkov photons	
		USER h	affke				
\Rightarrow 0	eelc	CERFIL ⁻	Г			Cherenkov output to extra file	
5		DATBAS	Т			write .dbase file	
		CERTEL	1				
	Marijk	0.0.	0.0.0	. 2000.	1700.	. Location and size of each CT	
	,	USER h	affke			user	
		atmosphe	ere O	F			

II. Atmosphärenmodelle MSIS

- empirische Atmosphärenmodelle
- basierend auf Daten von Satelliten und Raketen
- liefert: Temperatur und Dichte
- Bedienung: Variationsmöglichkeiten in Längen-, Breitengrad und in der Zeit
- Quellcode: Fortran

NASA

Altitude (km)

.3.5	# Atmospheric Model 6 (U.S. Standard)								
$\sim a$	# Alt [km	rho [g/] m/21 thick [g m/2] = 1 Brechungsindex							
C;									
UNIVERSITÄT DOI	Höhe	Dichte =_0 Thickness >5634E_03							
	2 000	0.10054E-02 = 0.81286E+03 = 0.23214E-03							
	3 000	0.90839E-03_0.71725E+03_0.20975E-03							
	4 000	0.81888E-03_0.63097E+03_0.18904E-03							
_	5.000	0.73643E-03 0.55328E+03 0.16994E-03							
	6.000	0.66012E-03 0.48352E+03 0.15235E-03							
	7.000	0.59048E-03 0.42105E+03 0.13620E-03							
	8.000	0.52609E-03 0.36529E+03 0.12136E-03							
_	9.000	0.46741E-03 0.31567E+03 0.10782E-03							
	10.000	0.41370E-03 0.27167E+03 0.95426E-04							
	11.000	0.36499E-03 0.23278E+03 0.84194E-04							
	12.000	0.31209E-03 0.19900E+03 0.71987E-04							
	13.000	0.26674E-03 0.17012E+03 0.61523E-04							
	14.000	0.22792E-03 0.14543E+03 0.52581E-04							
	15.000	0.19479E-03 0.12434E+03 0.44937E-04							
	16.000	0.16651E-03 0.10631E+03 0.38406E-04							
	17.000	0.14236E-03 0.90902E+02 0.32840E-04							
	18.000	0.12168E-03 0.77727E+02 0.28071E-04							
	19.000	0.10403E-03 0.66465E+02 0.23997E-04							
	20.000	0.88928E-04 0.56837E+02 0.20516E-04							
	21.000	0.75750E-04 0.48620E+02 0.17475E-04							
	22.000	0.64544E-04 0.41621E+02 0.14887E-04							
	23.000	0.55021E-04 $0.35655E+02$ $0.12695E-04$							
	24.000	0.46965E-04 0.30566E+02 0.10833E-04							
	25.000	0.40097E-04 $0.26222E+02$ $0.92494E-05$							
	20.000	0.27120E-04 $0.17920E+02$ $0.02570E-05$							
	32 500	0.10420E-04 0.12302E+02 0.42493E-03 0.12139E-04 0.85361E+01 0.28004E-05							

PRMPAR 1 particle type 300. ERANGE 30. energy range number of first shower event EVTNR 1 NSHOW 1 number of showers to generate ESLOPE -2.6 slope of primary energy spectrum THETAP 20. 20. range of zenith angle (degree) PHIP 0. 0. range of azimuth angle (degree) VIEWCONE 0.0. DIRECT results/ data directory managed by daemon SEED 0 seed values managed by daemon 1 0 SEED 2 seed values managed by daemon 0 0 SEED 3 0 0 seed values managed by daemon **OBSLEV 2200.E2** observation level (in cm) RADNKG 200.E2 outer radius for NKG lat.dens.determ. ARRANG 0. rotation of array to north starting altitude (g/cm**2) FIXCHI 0. MAGNET 29.5 23.0 magnetic field at LaPalma HADFLG 0 0 0 0 0 0 flags for hadr. interaction ECUTS 0.3 0.3 0.02 0.02 e.cuts: had, mu, elec y fot muon multiple scattering angle MUMULT T LONGI T 10. T F longit.distr. & step size & fit MAXPRT 1 max. number of printed events ECTMAP 1.E4 cut on gamma factor for printout STEPFC 0.1 mult. scattering step length fact. DEBUG F 6 F 1000000 debug flag and log unit for out Cherenkov wavelength band CWAVLG 290. 600. CSCAT 1 0. 20000. scatter Cherenkov events CERSIZ 1. bunch size Cherenkov photons USER haffke CERFIL T Cherenkov output to extra file DATBAS T write .dbase file **CERTEL 1** 0. 0. 0. 0. 0. 2000. 1700. Location and size of each CT Marijke USER haffke user atmosphere 117 EXIT terminates input

Hoehe (km)

Hoehe (km)

II. Atmosphärenmodelle

Eigene Atmosphärenmodelle

- Atmosphärenmodelle im CORSIKA-Paket:
- 2 Atmosphärenmodelle
 - MagicWinter: November April (atmprof11.dat)
 - MagicSommer: Mai Oktober (atmprof12.dat)

=> nur noch 2% Abweichung

III. Monte Carlo

Unterschiede in der Höhe der 1. WW:

U.S. Standard Atmosphäre: 17664,5 m

MagicWinter:

17928,3 m

MagicSommer:

18038,5 m

Marijke Haffke Universität Dortmund Atmosphärenmodelle bei MAGIC

IV. Ausblick

• Analyse mit Mars:

- Erkennbare Unterschiede oder nicht

• Wenn ja:

 Reanalyse von bekannter Quelle mit Sommerund Winteratmosphäre

Zusammenfassung

- MAGIC: Tscherenkov-Teleskop
- Software: CORSIKA
- Vergleich Atmosphärenmodelle CORSIKA mit MSIS
- Atmosphärendichte unterliegt jahreszeitlichen Schwankungen
- MagicWinter- und MagicSommer-Atmosphäre
- Reduktion der Abweichung um 2%

- Kosmische Spurensuche, Johannes Blümer
- CORSIKA Manual
- MSIS Homepage
- How to Camera, Abelardo Moralejo
- M. Teshima