Radio emission in extensive cosmic ray air showers – detection with LOPES

Steffen Nehls

Obertrubach-Bärnfels October 2004

KASCADE-Grande cosmic ray air shower experiment

- measurements of EAS in the primary with energy range $E_0 = 100 \text{ TeV} 300 \text{ PeV}$
- multi-detector experiment to determine as much as possible shower parameter

main task:

- primary energy E₀spectrum
- prim. particle mass A
- understanding interactions models

Radio emission produced in cosmic ray air showers

- primary high energetic particle interacting with molecules
- radiation probably due geomagnetic emission process
- charge separation in earth's magnetic field
- → classical electric dipol
- gyration of electrons along a small arc
 - emission of synchrotron radiation
- air showers emits radio pulses, known since 1965
 Problems:
 - success of other methods
 - radio interference
 - theory of emission process

Radio emission produced in cosmic ray air showers II

- radio emission measurements from air showers could give several benefits:
 - data from all over the shower evolution, so complementary to particle detectors
 - large collecting area for low costs
 - higher duty cycle than fluorescence and Cherenkov telescopes
 - effective RFI suppression allows measuring in polluted (populated) areas
- this can be achieved by new digital radio telescopes
- possible improvement for other experiments, e.g. Auger

LOPES = LOFAR Prototype Station

- 40 80 MHz frequency range
- 10 antennas in the first phase, 30 antennas in the second phase, just installed and ready for running
- set up at the KASCADE-Grande site
- LOPES-Goals:
 - develop techniques to measure the radio emission from air showers
 - determine the radiation mechanism of air showers
 - My work:
 absolute calibration and correlation
 of the radio signal with air shower
 parameters

Detection and signal processing

Layout of the electronic system

Receiver Modul

Memory Buffer TIM-Module

Event analysis with use of the air shower parameters

A. Horneffer et al. 2004

My work

- absolute calibration of the detected radio signal
- search for a correlation between radio signal and EAS parameter

signal =
$$f(E_0)$$
, = $f(A)$, = $f(\Theta, \Phi)$

- Including:
 - improvement of the electronical system
 - reduction of the noise (better S/N-ratio)
 - analysis of the environmental dependence
 - development of software tools and pipelines

Summary

- cosmic ray air showers emits coherent radio pulses through geosynchrotron radiation
- new digital radio antenna system, LOPES as a prototype for LOFAR
- absolute calibration and correlation of the received radio emission with EAS parameters

Selection criteria for radio events

Raw data (voltage amplitude over time) from the antenna for a time intervall of 800 µsec

Reconstruction incoherent coherent

