Reconstruction and simulation with multi PMT optical moduls for IceCube-Gen2

Thomas Kittler
Astroteilchenschule 2016
11.10.2016
IceCube Neutrino Observatory

What

Cubic kilometer array of optical sensors

Where

In a depth of 1.5km to 2.5km within the ice of the south pole

How

Detection of Cherenkov light emitted by secondary particles created in neutrino interactions

Why

Detection of high energetic cosmic neutrinos created in extreme cosmic environments
IceCube Neutrino Observatory

Optical sensor
10” photo multiplier and readout electronics in a pressure resistant glass sphere also called Digital Optical Module (DOM)

String
One string consists of 60 DOMs with ~17m spacing in between each module. Between two strings there is a distance of ~125m.

1 2 5 m

String

125m

IceCube Neutrino Observatory

String

125m

Optical sensor

10” photo multiplier and readout electronics in a pressure resistant glass sphere also called Digital Optical Module (DOM)
IceCube Neutrino Observatory

Achievements
First detection of extra-terrestrial high energetic neutrinos (arXiv:1311.5238)

Limitations
No cosmic neutrino sources were detected due to the small neutrino flux => increase instrumented volume

(Starting track event with a deposited energy of ~250TeV)
IceCube-Gen2

High Energy Array (HEA)
- ~120 additional strings
- ~250m string spacing
- Instrumented volume ~7 times larger than IceCube
- Target neutrino energy >=100TeV
Multi PMT Digital Optical Module (mDOM)

- One mDOM with 24 3" PMTs
- 4π acceptance
- Detection of local coincident hits
- Intrinsic direction information
Event simulation

\[\nu \]

ANIS
Event simulation

ANIS

Geant 4 (up to 1TeV)
or parameterized function
Event simulation

Geant 4 (up to 1TeV) or parameterized function
Event simulation

Geant 4 (up to 1TeV) or parameterized function

glass, gel, angular acceptance, wavelength acceptance
Data / Simulation processing

Detection process / Simulation

ν

Energy, direction, vertex

Detector

Detector response (detected photons over time per PMT)

Reconstruction + Analysis

Physical analysis

Neutrino energy, direction, flavor, vertex

Reconstruction algorithm
Reconstruction strategies

Simple reconstruction strategies
- Vertex: Center Of Gravity (COG) for the detected light within the detector
- Direction: Least square fit of timing information of detected light
- Energy: Number of hit DOMs or collected light as energy proxy

More advanced reconstruction strategy
- Reconstruct the event parameters using a maximum LLH approach
Max LLH event reconstruction

- Optical module (with hit)
- String
- Optical module (without hit)
Max LLH event reconstruction
Max LLH event reconstruction

- Photo electrons
- Time
- simple reconstruction algorithms
- est. source parameter (energy, direction, vertex)
Max LLH event reconstruction

Photo electrons

Lookup tables

est. source parameter (energy, direction, vertex)
Max LLH event reconstruction

Photo electrons

Calculate LLH

Vary source parameter (using a minimizer)
Max LLH event reconstruction

- Calculate LLH
- Vary source parameter (using a minimizer)
Max LLH event reconstruction

- Find maximum LLH
- Return respective source parameter

Reconstruction only successful when lookup tables are correct!
Evaluation of lookup tables

Example config:
Energy = 1TeV
Angle = 90°
Distance = 100m

N = 10000
Summery and Outlook:

- Sensitivity studies for IceCube Gen2 with mDOMs require:
 - Simulations (Toolset ready and working)
 - Reconstructions methods (not tested yet)

- Preformance studies will be started soon

- Direct comparison between IceCube DOMs and mDOM (and other possible modules) possible

- Possibility of Direct Reconstruction (no lookup tables needed) will be investigated
Event reconstruction with max LLH

Event topology (detector signal) → Simple first guess reco. algorithms → Event hypothesis (Energy, Pos, Dir, etc.)

Use minimizer to vary $<\text{energy}, \text{pos}, \text{dir}>$ until local min is reached

Calculate LLH for event hypothesis to look like the actual event

Lookup table