1) Fermi shock acceleration for pedestrians $(\rightarrow \text{Lecture } 1)$

Consider that particles gain energy per cycle $E \rightarrow \eta E$ with $\eta > 1$ and escape per cycle with a probability $P_{\rm esc} < 1$. Derive the differential (in energy) number density as a function of energy.

Hint: Consider energy and number of particles after n cycles.

2) Particle acceleration in steady state (effective treatment) (\rightarrow Lecture 1)

Consider particle acceleration with the acceleration rate $t_{\rm acc}^{-1} = \eta c/R_L$, where R_L is the Larmor radius $\propto E$. The escape rate is given by $t_{\rm esc}^{-1} \equiv E^{-\alpha}/T_0$. The injection is a δ -function describing injection at the low E_0 : $Q = Q_0 \cdot \delta(E - E_0)$.

How does N(E) in the steady state dependent on energy? Consider different values of α . How does the escape spectrum from the acceleration region look like for $\alpha = 1$?

Hint: Use the closed analytical solution for the steady state. The acceleration rate can be treated just as a cooling rate with inverted sign.

3) Photo-hadronic interaction rate $(\rightarrow \text{Lecture } 2)$

The interaction rate of initial protons p with photons γ is given by

$$\Gamma(E_p) = \int d\varepsilon \int \frac{d\cos\theta_{p\gamma}}{2} \left(1 - \cos\theta_{p\gamma}\right) n_{\gamma}(\varepsilon, \cos\theta_{p\gamma}) \,\sigma(\epsilon_r) \,. \tag{1}$$

Here $n_{\gamma}(\varepsilon, \cos \theta_{p\gamma})$ is the photon density as a function of photon energy ε and the angle between the photon and proton momenta $\theta_{p\gamma}$ ($\theta_{p\gamma} = \pi$ for heads-on collisions), $\sigma(\epsilon_r)$ is the photo-hadronic interaction cross section, and

$$\epsilon_r = \frac{E_p \varepsilon}{m_p} (1 - \cos \theta_{p\gamma}) \tag{2}$$

is the photon energy in the proton rest frame (PRF) – the cross sections are typically tabulated in. The interaction itself, and therefore E_p and ε , are to be described in the shock rest frame (SRF).

a) What is the relationship between ϵ_r and the center-of-mass energy \sqrt{s} , where $s = (P_1 + P_2)^2$ and P_1 and P_2 are the relativistic 4-momenta of proton and photon, respectively?

Bonus question: Once you are at this point, you can also easily derive the relationship Eq. (2).

b) Assume isotropically distributed target photons, *i.e.*, $n_{\gamma}(\varepsilon, \cos \theta_{p\gamma}) = n_{\gamma}(\varepsilon)$. Re-write Eq. (1) in the form

$$\Gamma(E_p) = \int d\varepsilon \, n_{\gamma}(\varepsilon) \, F(y) \tag{3}$$

with $y \equiv E_p \varepsilon / m_p$. What is the meaning of F(y) and y?

c) Compute and plot/discuss the function F(y) for the Δ -resonance box function approximation ("LR" for "lower resonance" in the following plot):

