Multimessenger astrophysics

Walter Winter DESY, Zeuthen, Germany

Astroteilchenschule 2016 Obertrubach-Bärnfels

October 2016

What is "multimessenger" astrophysics?

- > A buzzword describing any kind of analysis including more than one messenger?
- > A fashion concept, or a truly fundamental philosophy?
- Typically used in approaches involving at least two of the three messengers cosmic rays, neutrinos, gamma-rays
- But: lately also used in the context of follow-up analyses on gravitational waves for different messengers
- Sometimes mis-used instead of the word "multi-wavelength"?
- Multi-messenger astronomy = correlate signals from multiplemessengers?
- Multi-messenger astrophysics = What are the fundamental concepts describing the emitters of multiple messengers?

"Multimessenger astrophysics", definition for these lectures

Contents

ecture

 \sim

Lecture

က

-ecture

Particle astrophysics of hadronic sources (basic concepts)

Radiation models (blackboard)

- Meet the messengers:
 - Photons
 - Cosmic rays
 - Neutrinos
 - Gravitational waves
- Examples for generic multi-messenger approaches
- > Describing interactions (blackboard)
- > Challenges for multi-messenger approaches
- Energetics of sources (blackboard)
 - How to address the key challenges; example: GRBs

DISCLAIMER: Apologies if specific experiments or theoretical results are not mentioned. It is impossible to review this subject completely.

Incl. special feature: stacking analyses

Astroparticle physics of hadronic sources

A simple toy model for the source

If neutrons can escape: Source of cosmic rays

$$n \rightarrow p + e^- + \overline{\nu}_e$$

Neutrinos produced in ratio ($v_e:v_\mu:v_\tau$)=(1:2:0)

$$\begin{array}{ccc} & \to & \mu^+ + \nu_\mu \\ & & \mu^+ \to e^+ + \nu_e + \overline{\nu}_\mu \end{array}$$

Delta resonance approximation:

$$p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases}$$

 π

Cosmic messengers

$$\pi^0 \rightarrow \gamma + \gamma$$

High energetic gamma-rays; typically cascade down to lower E Additional constraints!

(Same process during propagation of cosmic rays in CMB: "cosmogenic neutrinos")

Typical hadronic radiation processes

> Nucleons (protons, neutrons)

Photo-meson production, e.g.

 $p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ \\ p + \pi^0 \end{cases}$

- $p\gamma \rightarrow pe^+e^-$ pair production
- pp collisions
- Beta decay (neutrons)
- Heavy nuclei
 - Photo-disintegration (produces) unstable isotopes)
 - Photo-meson production
 - Beta decay (typically blue), Spontaneous emission of nucleons (most extreme: white)
 - $A\gamma \rightarrow Ae^+e^-$ pair production
 - Ap collisions

Acceleration of primaries (protons, nuclei)

Maximal primary energy (generic concepts)

- Confinement condition in accelerator (R: size):
 F_L=F_C → E_{max} = q c B R (v=c)
- Larmor-Radius of a particle R_L = E/(q c B)
- Rigidity (stiffness to resist magnetic field) is defined as R_L B ~ E/(q c)
- > For nuclei at same E: $q \sim Z \rightarrow Rigidity \sim 1/Z$

> Cycle time
$$T_{cycle} = 2 \pi R_L/c \sim E/(c^2 q B)$$

Acceleration rate with η = (here) fractional energy gain/cycle ~ acceleration efficiency:

$$t_{\rm acc}^{-1} \equiv \frac{1}{E} \frac{dE}{dt} \sim \frac{dE}{E} \frac{1}{T_{\rm cycle}} = \hat{\eta} \frac{1}{T_{\rm cycle}} = \eta \frac{c^2 qB}{E}$$

 Maximal energy including acceleration efficiency from t_{acc}=t_{esc}~R/c (free streaming escape) → E_{max}~η q c B R

Cosmic vs. terrestrial particle accelerators

Lorentz force = centrifugal force $\rightarrow E_{max} \sim q c B R$

> B ~ 8 T

- > E_{max} ~ 300,000,000 TeV
 > E_{max} ~ 7 TeV
- **>** B ~ 1 mT 1 T
- R ~ 100,000 10,000,000,000 km > R ~ 4.3 km

UHECR sources on Hillas plot

- Sources which can reach the maximal energy (necessary condition)
 E_{max} ~ η q c B R [right of lines]
- Complication: Lorentz-boosted sources, such as Gamma-Ray Bursts

$$\label{eq:gamma} \begin{split} \Gamma &\sim 100 - 1000 \\ \text{relax this condition} \\ (\text{interpret R and B in} \\ \text{shock rest frame; primed quantities!}) \\ \text{E}_{\text{max}} &\sim \eta \ \text{q c B' R' } \Gamma \end{split}$$

Consequence for heavy nuclei:
 E_{max} ~ Z ("Peters cycle")
 Peters, 1961

(from Astropart. Phys. 34 (2010) 205)

Other necessary conditions

- The confinement condition is necessary, but not sufficient
- Example: Protons lose energy by synchrotron losses. Loss rate

$$t_{\rm synchr}^{-1} = \frac{q^4 B^2 E}{9 \pi \epsilon_0 m^4 c} \,^{7}$$

Limits the maximal energy for large B + can affect Peters cycle for nuclei

(from Astropart. Phys. 34 (2010) 205)

Less trivial examples: Maximal energy from rate plots

A more realistic example (Gamma-Ray Burst): Exercise: 1) Find the dominant process limiting the acceleration, 2) read off the maximal primary energy, 3) check if Peters' cycle is satisfied here

(Courtesy Daniel Biehl)

Secondary production: Particle physics 101

Radiation models: one spatial zone

Time-dependent PDE system, one PDE per particle species i

$$\frac{\partial N_i}{\partial t} = \frac{\partial}{\partial E} \left(-b(E)N_i(E) \right) - \frac{N_i(E)}{t_{esc}} + Q(E)$$
Cooling/acceleration
$$b(E) = -E t^{-1}_{loss}$$
Q(E,t) [GeV^{-1} cm^{-3} s^{-1}]
N(E,t) [GeV^{-1} cm^{-3}] particle spectrum including spectral effects

> Injection: species *i* from acceleration zone, and from other species *j*:

$$Q(E) = Q_i(E) + Q_{ji}(E)$$

$$Q_{ji}(E_i) = \int dE_j N_j(E_j) \frac{\Gamma_j^{\text{IT}}(E_j)}{\frac{dE_j}{dE_i}} \frac{dn_{j \to i}^{\text{IT}}}{dE_i}(E_j, E_i)$$

$$P_{ij}(E_i) = P_{ij}(E_j) \frac{dn_{j \to i}}{dE_i}(E_j, E_i)$$

$$P_{ij}(E_j) \frac{dn_{j \to i}}{dE_i}(E_j, E_i)$$

Steady state solution: dN/dt ~ 0

- Typical "escape" processes: Escape from region, decay, disintegration, photomeson production (if species changed), ...
- Typical "cooling" processes: Synchrotron cooling, pair production, adiabatic cooling (by expansion of region)
- > Simple case: No energy losses b=0: $N(E) = Q(E) t_{esc}$
- Special case: t_{esc} ~ R/c (free-streaming, aka "leaky box")

... can be also more sophisticated: spatially resolved models

Exercise:

G. Maier

What are the new terms you haven't seen before?

Example: Neutrino production from py interactions

Secondary (muon, pion, kaon) cooling

Example: GRB

Secondary spectra (μ , π , K) loss-steepend above critical energy

$$E_{c}' = \sqrt{\frac{9\pi\epsilon_{0}m^{5}c^{7}}{\tau_{0}e^{4}B'^{2}}}$$

> E_c^{\prime} depends on particle physics only (m, τ_0), and **B**⁴

Baerwald, Hümmer, Winter, Astropart. Phys. 35 (2012) 508; also: Kashti, Waxman, 2005; Lipari et al, 2007; ...

Secondary (muon, pion, kaon) cooling

Example: GRB

Secondary spectra (μ , π , K) loss-steepend above critical energy

$$E_{c}' = \sqrt{\frac{9\pi\epsilon_{0}m^{5}c^{7}}{\tau_{0}e^{4}B'^{2}}}$$

- > E_c^{\prime} depends on particle physics only (m, τ_0), and **B**⁴
- Leads to characteristic flavor composition and shape

Baerwald, Hümmer, Winter, Astropart. Phys. 35 (2012) 508; also: Kashti, Waxman, 2005; Lipari et al, 2007; ...

Example: photo-disintegration of ⁵⁶Fe in a Gamma-Ray Burst

> Challenges:

- Arbitrary target photon spectra
- 481 isotopes, 41000 disintegration channels; automatic reduction
- Efficient deterministic computation: _____ one PDE per isotope
- Radiation processes: photodisintegration, photomeson production, beta decays, spontaneous emissions, synchrotron cooling, adiabatic cooling
- Current questions, e.g.
 - Dependence on target spectrum? Results for different object classes?
 - Does the neutrino production depend on the cosmic ray composition?
 - How are cosmic rays ejected?

Radiation models (blackboard)

Contents

Lecture

 \sim

_ecture

က

_ecture

Particle astrophysics of hadronic sources (basic concepts)

Radiation models (blackboard)

- Meet the messengers:
 - Photons
 - Cosmic rays
 - Neutrinos
 - Gravitational waves
- Examples for generic multi-messenger approaches
- > Describing interactions (blackboard)
- > Challenges for multi-messenger approaches
- Energetics of sources (blackboard)
 - How to address the key challenges; example: GRBs

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 24

DISCLAIMER: Apologies if specific experiments or theoretical results are not mentioned. It is impossible to review this subject completely.

Meet the messengers

Meet the messengers: Photons at multiple wavelengths

High-energy photon propagation/attenuation

Gamma-rays: Key experiments

DFS

CTA; MAGIC, VERITAS, H.E.S.S.

Current theoretical paradigms Example: Multi-wavelength campaigns for AGN blazars

AGN blazar

Model	1 st hump	2 nd hump
Leptonic	e synchrotron	Inverse Compton ($e\gamma$) on synchr. or ext. γ
Hadronic	Proton synchrotron	Hadronic process (e.g. π^0 decays)
Lepto-hadronic	e synchrotron	Mixed processes

Photon observations alone in most cases inconclusive.

Multi-messenger astronomy may tell us if there are hadrons

(from Gao, Pohl, Winter, 2016)

Oct. 2016 | Page 29

Meet the messengers: Cosmic rays

- Charged particles, proton or heavier nuclei
- Spectrum with breaks (knee, 2nd knee, ankle)
- Composition non-trivial function of energy

10¹¹

Gaisser, Stanev, Tilav, 2013

Ultra-high energy cosmic ray (UHECR) experiments

Key issue: Cosmic ray transport. Example: UHECR, protons

Kinetic equation for co-moving number density:

[here b=-dE/dt=-E t⁻¹_{loss}]

CR inj.

Photohadronics

e.g. SOPHIA

$$\dot{Y}_p = \partial_E \left(HEY_p \right) + \partial_E \left(b_{e^+e^-}Y_p \right) + \partial_E \left(b_{p\gamma}Y_p \right) + \mathcal{L}_{CR}$$

Pair production

Blumenthal, 1970

Interactions with CMB and cosmic infrared background (CIB)

Expansion of

Universe

- > Attenuation ⇒ UHECR must from from our local environment (~ 1 Gpc at 10¹⁰ GeV,
 - ~ 50 Mpc at 10¹¹ GeV)

Current theoretical paradigms (UHECRs)

Meet the messengers: Neutrinos

- Neutral particles, extremely small mass, weak interaction
- > Come in three flavors: v_e , v_μ , v_τ
- Neutrino propagation:

The standard case: decoherent neutrino oscillations/flavor mixing

$$P_{\alpha\beta} = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$$

Source $v_e: v_\mu: v_\tau = 1:2:0$ \rightarrow Detector 1:1:1 + redshift of energy if cosmological distance

Neutrino telescopes

ANTARES/KM3NeT

See lectures C. Finley

2015: 54 high energy cosmic neutrinos

Neutrino spectrum: Power law fits $(E_{\gamma})^{-\gamma}$

- Tension in different data sets?
- Flattening of spectrum? Different components?
- > Softer galactic component, together with harder extragalactic one?

Neutrinos: Flavor composition

> Measurement

Standard Model expectation

Meet the messengers: Gravitational waves

Fluctuations of metric tensor – general relativity. Black hole merger:

SXS Collaboration/Canadian Institute for Theoretical Astrophysics/SciNet

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 39

GW

Key experiments: Advanced LIGO

Experimental results

Currently two evident events, from black hole mergers: GW150914, GW151226

Ligo/Virgo, PRL 2016 x 2, Figure: GW 150914

First estimates for BH-BH merger rates ~9-240 Gpc⁻³ yr⁻¹ arXiv:1606.04856

Multi-messenger follow-ups ... found nothing!

Theoretical paradigms?

Examples for generic multi-messenger approaches

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 44

Observational strategies: Transients

> Example:

Astrophysical Multimessenger Observatory Network

Triggers from observatories watching large portion of sky

GW

CR

Waxman-Bahcall argument

Neutrino flux compatible with expectation from UHECR injection (if efficient secondary production) Waxman, Bahcall, 1999

Caveats:

- Extrapolation over many order of E
- If not E⁻², imbalance in energy

CR

Constraints from diffuse γ-rays (Fermi)

- Recall that π⁰ (→ γ) and π[±] (→ ν) are produced together. Model-independent constraints? [works well for pp sources]
- > Saturate diffuse extragalactic γ -ray background:

The problem is actually more severe: the non-blazar contribution to the extragalatic γ-ray background is small (e.g. from starburst galaxies)

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 47

Cosmogenic neutrinos

Neutrino bound on proton dip model

> Similar arguments from γ -ray BG e.g. Supanitsky, 2016

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 49

CR

Describing interactions (blackboard)

Contents

Lecture

 \sim

Lecture

က

ecture

Particle astrophysics of hadronic sources (basic concepts)

Radiation models (blackboard)

- Meet the messengers:
 - Photons
 - Cosmic rays
 - Neutrinos
 - Gravitational waves
- Examples for generic multi-messenger approaches
- > Describing interactions (blackboard)
- > Challenges for multi-messenger approaches
- Energetics of sources (blackboard)
 - How to address the key challenges; example: GRBs

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 51

DISCLAIMER: Apologies if specific experiments or theoretical results are not mentioned. It is impossible to review this subject completely.

Incl. special feature: stacking analyses

Challenges for multi-messenger approaches (including special feature on stacking analyses)

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 52

Challenges for multi-messenger analyses and models

Neutrinos from CR interactions in our galaxy

> If the protons deviate from E^{-2} (as we observe), the neutrino spectrum strongly depends on composition

ν

3.5

3

2.5

CR

Multimessenger stacking analyses

- Constrain the flux in messenger B) for individual similar-type objects observed in messenger A) (typically photons in different energy bands, such as X-rays, γ-rays)
- Use timing (transients, flares), directional or energy information to reduce backgrounds and filter out the relevant information from messenger B)
- Effective background reduction techniques e.g. for neutrinos (Atmospheric backgrounds are suppressed by "duty cycle" of observation, energy cuts or directional cuts)

Stacking analysis, illustrated (e.g. neutrinos, transients)

Expected number of events from one transient:

$$N_i = \int dE \mathcal{F}_i(E) A_{\text{eff}}(E)$$

Effective area A_{eff} typically includes analysis cuts; *fluence* (time-integrated flux from a transient) F_i in units cm⁻² GeV⁻¹

- > The fluence F_i typically has a specified shape and a free normalization, e.g. $\mathcal{F}_i = K \cdot E^{-2}$ (if all sources are alike)
- > Expected total number of events $N = \sum_{i} N_{i}$ can be translated into a limit on K (e.g. N=2.44 for 90% CL with 0 BG) i (Feldman, Cousins, 1998)
- > If a prediction or limit for F_i exists, one can convert that into a quasi-diffuse flux $\phi_{\rm QD} \equiv (4\pi)^{-1} \mathcal{F}_i \dot{n}$, where \dot{n} is the expected number of transient events (observable in messenger A) per time frame (year)
- Exercise: How do prediction and limit scale with observation time?

Real-life example: AGN blazars

 $\mathbf{v} \longleftrightarrow \mathbf{\tilde{v}}$

- > AGN blazar search with 2nd Fermi-LAT catalogue
- Power law shape
- Different assumptions:
 - All F_i alike
 - $= \mathsf{F}_{i}^{\nu} \sim \mathsf{F}_{i}^{\gamma}$
- > However: wouldn't one expect $F_i^{\nu} \sim (F_i^{\gamma})^2$? (Secondary production ~Density²)

Key challenge 3: Secondary production very sensitive to geometry estimators

Gamma-ray bursts (GRBs)

- Most energetic electromagnetic (gamma-ray) outburst class
- Several populations, such as
 - Long-duration bursts (~10 100s), from collapses of massive stars?
 - Short-duration bursts (~ 0.1 1 s), from neutron star mergers?
 - Typical redshift ~ 1-3 (cosmological distances) Useful as "standard candles"?
 - Observed light curves come in large variety

GRB stacking analysis

- More sophisticated stacking: Use spectral information and measured properties of GRBs to predict individual GRB expectation
- Need Density ~ Energy / Volume in source Geometry estimators (from time variability, Γ) used to compute volume

Neutrino production in AGN

Re-call connection:

eV

keV

$$p + \gamma \to \Delta^+ -$$

- Assume that 2nd peak from hadronic γ -rays (from π^0 produced with π^+)
- One neutrino event from blazar PKS B1424-418?

Probem: cannot describe 2nd peak by hadronic processes only in selfconsistent model

MeV

 L_{γ}

GeV

TeV

6

PeV

Similar arguments: v production in GRBs?

 10^{-9}

 10^{3}

 10^{4}

Key challenge 1: How do cosmic rays escape from the source?

10⁹

1010

10¹¹

10

E(GeV)

Key challenge 2: Baryonic loading?

e.g. Baerwald, Bustamante, Winter, Astropart. Phys. 62 (2015) 66

 10^{10}

 10^{11}

 10^{9}

CR

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 61

 10^{5}

 10^{6}

 10^{7}

 10^{8}

Neutrinos from protons escaping AGN blazars

Neutrinos from pion production on external photons may dominate over neutrinos from blazar zone if the cosmic rays can efficiently escape

Key challenge 1: How do cosmic rays escape from the source?

Murase, Inoue, Dermer, 2014

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 62

Impact of assumptions on cosmic ray escape

> The authors assume escape fraction $f_{esc} = (1 - min(1, t_{dvn}/t_{cool}))$ What fraction of cosmic rays can escape at 10^7 GeV (shock frame)?

> Assume that the protons are magnetically confined and only the fraction f_{esc} =min(1,c R_L/t_{dvn}) can escape (escape from edge of region within R_L) What fraction of cosmic rays can escape now at 10⁷ GeV? Consequence? Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 63

Energetics of sources, geometry estimators (blackboard)

Example: GRBs

DES

Towards addressing the key challenges in multimessenger models

Example: GRBs

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 65

Challenges for multi-messenger models

GRB - Internal shock model

 One zone model: All collisions assumed to occur at same radius: R_C ~ 2 Γ² c t_v/(1+z) (requires "machine-gun" precision)

Volume ~ $R_C^2 t_v$ estimated from Γ , t_v ; therefore strong dependence of pion production efficiency on geometry estimator (key challenge 3) Guetta et al, Astropart. Phys. 20 (2004) 429

Multi-zone model: Distribution of collisions depending on properties of the central engine

(needed to dissipate initial kinetic energy efficiently)

$<\Gamma> \sim 100-500$

- (conservative scenario, green curve, hard) (from:Baerwald, Bustamante, Winter, ApJ 768 (2013) 186; same argument used for nuclei in Globus et al, 2014)
- "All escape": magnetic fields decay quickly enough that charged cosmic rays can escape (most aggressive scenario, dashed curve, $\sim E^{-2}$)
- Diffusion (need spatially resolved models ...)

Three extreme cases:

Neutron model

Neutrinos and cosmic rays (from neutrons) produced together (depends on pion prod. efficiency, blue curve, softer) (pure neutron model excluded in IceCube, Nature 484 (2012) 351)

> **Direct escape** (aka "high pass filter", "leakage") Cosmic rays can efficiently escape if Larmor radius reaches size of shell width

$$p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ \\ p + \pi^0 \end{cases}$$

ce?

Dependence of escape mechanism on shell parameters

- Escape mechanism depends on shell parameters
- Direct escape dominates if neutrino production is inefficient
- In fact, same model, only different parameters!

Baerwald, Bustamante, Winter, ApJ 768 (2013) 186

Key issue 2: Baryonic loading. UHECR fit to TA data

- > Baryonic loading (f_e^{-1}) is obtained by the fit to UHECR data (no input!)
- > GRBs can be the sources of the UHECRs for reasonable f_e^{-1}

Baerwald, Bustamante, Winter, Astropart. Phys. 62 (2015) 66; here figures with TA data

UHECR fit of ankle model: the power of (future) v data

Key issue 3 (sensitivity to geometry estimators) Back to the roots: use multiple collision zones

- > Set our shells with Γ distribution
- The light curves can be predicted as a function of the engine parameters
- Consequence: Collsions radii are widely distributed!
- Neutrino flux not directly proportional to gamma-ray flux!

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 72
Consequences for multiple messengers from one GRB

where the densities are very different

 Observables from γ-ray observations may not be representative for the other messengers

Bustamante, Baerwald, Murase, Winter, Nature Commun. 6, 6783 (2015)

Consequences for neutrino production

Logic: can only use observed gamma-rays to predict "minimal" neutrino flux. These come from beyond the photosphere

Therefore, this minimal neutrino flux is dominated by a few collisions just beyond the photosphere (red)

- E² φ ~ 10⁻¹¹ GeV cm⁻² s⁻¹ sr⁻¹
- This prediction is robust (hardly depends on Γ, baryonic loading) because Thomson scattering (→photosphere) and pγ scale in same way with particle density (for fixed E_{iso})

> Moderates key challenge 3

Bustamante, Baerwald, Murase, Winter, Nat. Commun. 6, 6783 (2015)

Key challenge 0: What if ... Auger is right?

By the same logic, UHECR nuclei can escape from regions where photon densities are lower (relevant R_c somewhat larger)

Bustamante, Baerwald, Murase, Winter, Nat. Commun. 6, 6783 (2015); arxiv:1409.2874

Can describe Auger observations: see Globus et al, arXiv:1409.1271; arXiv:1505.01377

Walter Winter | Astroteilchenschule 2016 | Oct. 2016 | Page 75

GRBs with central engine Γ **ramp-up and slowdown** ... first steps towards multi-messenger – multi-wavelength approaches

Fast variability + pulse structure

> Bustamante, Murase, Winter, arXiv:1606.02325, ApJ (to appear)

Time-delays in high-E bands expected if there is a correlation between R_C and t_{obs}:

Time delay from suppression of high-E signal by γγ interactions from early collisions at low R_C

Summary and conclusions

- Multi-messenger astronomy: use observational arguments (timing, direction, energy, anisotropies, multiplets, ...)
- Beyond that: analyses typically rely on a theory for the source, which may be sometimes hidden; assumptions have to critically reviewed, and may be over-simplified
- Bottom-up models predict different production regions for neutrinos, gamma-rays, cosmic rays; consequence: difficult to relate messengers to each other in model-independent way. Advantage: clues how to search the haystack ->
- Discussed key challenges: Cosmic ray composition, cosmic ray escape, baryonic loading, geometry estimators, self-consistent description of emissions

Multi-messenger astrophysics can address these questions! [but we are not yet there ...]

