Principles and design of Hipparcos and Gaia

Michael Perryman

(Erlangen, 8-10 October 2014)

Hipparcos

Our Sun

Gaia

Parallax measurement principle...

Some history: the first 2000 years

- 200 BC (ancient Greeks):
 - size and distance of Sun and Moon; motion of the planets
- 900–1200: developing Islamic culture
- 1500–1700: resurgence of scientific enquiry:
 - Earth moves around the Sun (Copernicus), better observations (Tycho)
 - motion of the planets (Kepler); laws of gravity and motion (Newton)
 - navigation at sea; understanding the Earth's motion through space
- 1718: Edmond Halley
 - first to measure the movement of the stars through space
- 1725: James Bradley measured stellar aberration
 - Earth's motion; finite speed of light; immensity of stellar distances
- 1783: Herschel inferred Sun's motion through space
- 1838–39: Bessell/Henderson/Struve the first parallaxes
- 1880–1990: photographic and meridian circle catalogues

Accuracy over time

Over the last 100 years, bigger telescopes measure:

- fainter stars (billions)
- more star motions (millions)
- more star distances (few thousand)

The Astrographic Catalogue 1887 – 1930/1964

...measurements made and recorded by hand!

Yerkes refractor ~ 1900

Schmidt telescopes ~1950–1980

European Southern Observatory, Chile ~2000

European ELT (Extremely, Large Telescope) ~ 2020

...but it remains all but impossible to measure star distances from Earth, beneath its phase-perturbing atmosphere...

Stellar Distances and Motions: principles and numbers

- star distances are determined trigonometrically, using Earth's annual orbit around the Sun as baseline (INPOP06: 149 597 870 691 m, recently defined by IAU as 149 597 870 700 m)
- star distance of I pc gives a parallax of I arcsec
- nearest star is ~1 pc \approx 3.26 light years = 3x10¹⁶ m
- Galactic centre \approx 8 kpc \approx 30,000 light years; requires 10 µas at 10% accuracy
- stars move through space at ~30 km/s, equivalent to ~0.1 arcsec/yr at a distance of 100 pc

This is the problem...

These are the angles...

...it has proven impossible to eliminate these local distortions from small field observations (photographic plate or CCD), even using the method of 'block adjustment' (Eichhorn 1988) ¹ schematic of a distorted reference frame

Measurement principle

ground, or HST-FGS etc

The basic angle follows from the great-circle rigidity...

Principle (1/3): one star, showing effects of proper motion and annual parallax

Principle (2/3): three stars in same region of sky: parallaxes in phase

Principle (3/3): three stars in each of two regions of sky: parallaxes out of phase

Hipparcos

proposed (Lacroute): 1968 accepted by ESA: 1981 launched: 1989 operated: 1989-1993 catalogue published: 1997

Early discussions, Bordeaux 1965

- Physics underpinning positional measurements:
 - the stellar distances (parallaxes): used to convert apparent quantities (notably magnitude) to absolute values (luminosities)
 - the space motions (angular, eg mas/yr), converted to linear space velocities (km/s) for kinematics and dynamics (absence of V_{rad})
- Main problems in making these measurements from ground:
 - the Earth's atmosphere (+ gravitational flexure +thermal variations)
 - determining an all-sky reference star grid such that:
 - the proper motions are (largely) free of systematics
 - the parallaxes are <u>absolute</u> (rather than relative)
- Justification for making these measurements from space:
 - measurements <u>above</u> the atmosphere
 - the consequent ability to make <u>large-angle</u> measurements
 - the resulting provision of <u>absolute</u> parallaxes

Hipparcos optical design

The 30 cm diameter beam combining mirror (now in National Maritime Museum, London)

Hipparcos: measurements at the focal plane

- a high fidelity modulating grid
- 2688 grid lines
- about 2.5 cm x 2.5 cm
- grid period = 1.208 arcsec on sky

- star images pass behind grid
- detector with piloted field of view sampled the modulated signal by switching rapidly between star images several times per sec
- both fields of view are sampled
- modulation intensity \rightarrow star magnitude
- relative signal phase \rightarrow along-scan separation (modulo grid period and γ)
- star positions established to ~I arcsec a priori, to allow detector piloting, and to resolve the grid period ambiguity in the relative separation
- signal digitised at 1200 Hz, sent to ground

Image dissector tube piloting

* requires star positions a priori

- * dwell period ∝ star magnitude
- * switching frequency = f(structural modes)

phase difference \Rightarrow along-scan separation, modulo grid period (~1.2 arcsec) and basic angle (γ ~58°)

second harmonic $(A,\phi) \Rightarrow$ binary star $(\Delta m, \Delta \theta)$

Star Observing Principles: Hipparcos & Gaia

Data Analysis: Principles

- as the satellite traces out a series of great circles on the sky, each star is (effectively) instantaneously stationary
- each star has a 2d position (abscissa and ordinate) projected onto that great circle
- in principle one should solve for both coordinates
- in practice, only the projection along the great circle (abscissa) dominates the 'greatcircle solution'
- least-squares adjustment gives the along-scan position of each star at that epoch
- all great circles (12 hr duration) over the entire 3-year mission are then 'assembled'
- a star's position at any time t is represented by just <u>five</u> parameters: position (xy), proper motion components (μ_x , μ_y), parallax (π)

Numerical results

A catalogue of 118,000 stars (published 1997): each of the 5 parameters determined to ~1 milliarcsec

Some limitations of Hipparcos

- a modest telescope aperture (30cm)
- modulating grid leading to ~30% light loss
- a low-efficiency photocathode detector (~10%)
- sequential (non-multiplexed) star observations

These shortcomings are addressed by Gaia, which uses the same principles as Hipparcos to improve accuracies by x50

Gaia

proposed (Lindegren & Perryman): 1993 accepted by ESA: 2000 launched: December 2013

Gaia: payload/telescope

Gaia: specifications

- astrometry:
 - 10⁹ stars to 20 mag (complete: on-board detection)
 - represents ~1% of the Galaxy's stellar population
 - accuracy at 15 mag: 25 microarcsec
 - applies to positions, parallaxes, annual proper motions
- photometry:
 - multi-colour, in about 10 bands (cf 2 for Hip-Tycho)
- radial velocities for 5-150 million stars

Gaia compared with Hipparcos

	Hipparcos	Gaia			
Magnitude limit	12	20 mag			
Completeness	7.3 – 9.0	~20 mag			
Bright limit	~0	~3-7 mag			
Number of objects	120 000	26 million to $V = 15$			
		250 million to $V = 18$			
		1000 million to $V = 20$			
Effective distance limit	1 kpc	1 Mpc			
Quasars	None	$\sim 5 \times 10^5$			
Galaxies	None	$10^6 - 10^7$			
Accuracy	~1 milliarcsec	7 μ arcsec at V = 10			
		25 μ arcsec at V = 15			
		300 μ arcsec at V = 20			
Photometry	2-colour (B and V)	Spectrum to $V = 20$			
Radial velocity	None	1-10 km/s to V = 16 - 17			
Observing programme	Pre-selected	Complete and unbiased			

Why a Survey to 20 mag?

Population	Tracer	Mv	l	b	d	Av	V_1	V_2	ε _T	σ_{μ_1}	σ_{μ_1}	σ_{π_1}
		mag	deg	deg	kpc	mag	mag	mag	km/s	µas/yr	-	-
Bulge	gM	-1	0	<20	8	2-10	15	20	100	10	0.01	0.10
	HB	+0.5	0	<20	8	2-10	17	20	100	20	0.01	0.20
	MS	+4.5	1	-4	8	0-2	19	21	100	60	0.02	0.60
Spiral arms	Cepheids	-4	All	<10	10	3-7	14	18	7	5	0.03	0.06
	B-M supergiants	-5	All	<10	10	3-7	13	17	7	4	0.03	0.05
	Perseus Arm (B)	-2	140	<10	2	2-6	12	16	10	3	0.01	0.01
Thin disk	gK	-1	0	<15	8	1-5	14	18	40	6	0.01	0.06
	GK	-1	180	<15	10	1-5	15	19	10	8	0.04	0.10
Disk warp	gM	-1	All	<20	10	1-5	15	19	10	8	0.04	0.10
Thick disk	Miras, gK	-1	0	<30	8	2	15	19	50	10	0.01	0.10
	HB	+0.5	0	<30	8	2	15	19	50	20	0.02	0.20
	Miras, gK	-1	180	<30	20	2	15	21	30	25	0.08	0.65
	НВ	+0.5	180	<30	20	2	15	19	30	60	0.20	1.50
Halo	gG	-1	All	<20	8	2-3	13	21	100	10	0.01	0.10
	HB	+0.5	All	>20	30	0	13	21	100	35	0.05	1.40
Gravity, K-z	dK	+7-8	All	All	2	0	12	20	20	60	0.01	0.16
	dF8-dG2	+5-6	All	All	2	0	12	20	20	20	0.01	0.05
Globular clusters	gK	+1	All	All	50	0	12	21	100	10	0.01	0.10
Satellite orbits	gМ	-1	All	All	100	0	13	20	100	60	0.30	8.00

Focal Plane

- stars detected (ASMI) and confirmed (ASM2) as they enter the field; no input catalogue
- this is crucial for variable stars, high proper motions stars, asteroids, etc
- measured using TDI as they cross the astrometric field (AFI to AF9), centroiding on ground
- photometric measurements across blue and red photometers \rightarrow classification, chromaticity
- radial velocity spectrometer: measurements (in Ca II) for bright stars across RVS1 to RVS3
- also: Basic Angle Monitoring (BAM) and Wave₄₀ Front Sensors (WFS) for focusing

The complete package of CCDs, bolted to the SiC support structure, providing thermo-mechanical stability

Astrium, January 2012

Sky scanning

- scanning of celestial great circles by the two fields of view due to the six hour spin period
- the slow precession of the spin axis changes the orientation of the scanned great circles allowing coverage of different areas on the sky

- precession of the spin axis at 45° around the Sun with a period of 63 days
- this period gives the depicted overlap which ensures that each position on the sty is observed in at least three distinct epochs each half year

Gaia: a Global Iterative Solution

The Hipparcos and Gaia data are amenable to a more 'logical' and more rigorous solution:

- the satellite observations (star positions and motions), as well as instrument calibration parameters, the satellite attitude, and its orbit and velocity are self-consistent
- therefore a block iterative solution can be adopted. As implemented, it consists of four blocks which can be calculated independently, although each block depends on every other block; evaluated cyclicly until convergence
- the solution can be visualised as a successive iteration of:
 - S = A + G + C
 - A = S + G + C
 - G = S + A + C
 - C = S + A + G

- S: the star update
- A: the attitude update
- C: the calibration update
- G: the global parameters update
- details: mathematical formulation: Lindegren et al (2012, A&A); computational aspects : O'Mullane et al (2011, ExA)
- the data processing (currently 1.5 Tflops at ESAC), and data storage requirements (~10 PBytes), are very large
- the intention is to directly iterate some 100 million sources, and interpolate the remaining 90%
- the practical implementation has proven very difficult:
 - studies were already made (in Italy) in the context of the Hipparcos data processing ~1990
 - first experiments was based on a re-analysis of the Hipparcos data (100,000 stars) ~1997
 - groups in Madrid (GMV), Barcelona (UB) and Torino (OATo) have not been able to get a working solution
 - it has been the subject of a major effort at ESAC (Spain) since ~ 2005
 - the Gaia s/w will be used for the analysis of the Japanese nano-Jasmine satellite data (Gouda et al)

End