Suche nach Dunkler Materie mit ANTARES und KM3NeT

Holger Motz Erlangen Centre for Astroparticle Physics Schule für Astroteilchenphysik Obertrubach-Bärnfels, Oktober 2008

Supersymmetry

- SUSY Operator Q: boson => fermion / fermion => boson
- Creates spectrum of additional particles
- Most simple: Minimal Supersymmetric Standard Model (MSSM):
- N=1 SUSY (use Q only once) double number of particles
- Names: just add s- for new bosons (e.g. selectron) and -ino for new fermions (e.g. Wino)
- Why? Solve fine tuning problem (loop corrections to Higgs mass cancel naturally)
- Problem: No SUSY particles detected (or even seen directly)
- Solution: SUSY must be broken (higher masses)
- But not too much ("soft breaking") to still cancel loop terms

Supersymmetric Dark Matter & Galactic Halo

- Neutralino possible LSP
- Created in the early universe
- Stable because of R-Parity => still there (but two can annihilate)
- Dark Matter drives structure formation
- Galaxies have halos of Dark Matter
- Various parameterizations of Halo but at Sun's position all have Neutralino density ~ 0.3 GeV/cm³

Indirect Search for Dark Matter

- Neutralinos annihilate => primary annihilation products (quarks, gauge bosons, leptons) decay into neutrinos
- Could look at halo directly, but we can do better because...
- Elastic scattering => Wimps bound to massive stellar objects (Sun)
- Increase of Neutralino density => Annihilation rate enhanced

Neutrino Telescope: Detection Principle

- Neutrinos can penetrate Earth
- CC interaction in the vicinity of the detector => muon with (almost) same trajectory
- Muon emits Cerenkov light when traversing water
- Position and time of Cerenkov photons detected allow reconstruction of muon path

The ANTARES Collaboration and Site

24 Institutes from 7 Countries

Detector located in Mediterranean near Toulon at 2475 m depth (to shield from atmospheric muons)

The ANTARES Detector

- 12 Lines + IL, all operational since May 30th 2008
- Each line: 25 storeys with 3 PMTs per storey
- 885 PMTs total (one sector acoustic particle detection)

Shore Station

View from the control room

Looks also nice from outside

Detection and Calibration Elements

ANTARES Neutrino Effective Area in the low-energy regime

ANTARES Low-Energy Effective Area

60 kHz background rate from K-40 decay and bioluminescence

mSUGRA parameter space scan

- Four free parameters + one sign parameter space at GUT scale: m₀, m_{1/2}, sign (μ), A₀, tan (β)
- Dark Matter relic density known from WMAP measurement (26: 0.094 < $\Omega_{\rm CDM}h^2$ < 0.129)
- Calculations based on DarkSUSY
 - Random walk used to scan for WMAP conform models
 - Neutrino oscillations in matter and vacuum included
 - ISASUGRA RGE-code used
 - Top-quark mass 172.5 GeV
 - NFW halo model

Scanned Parameter Space: $0 < m_0 < 8000 \text{ GeV}$ $0 < m_{\frac{1}{2}} < 2000 \text{ GeV}$ sign (μ) = +1 $-3m_0 < A_0 < -3m_0$ $0 < \tan(\beta) < 60$

mSugra Dark Matter Neutrino Flux

•Integrated v_{μ} and \overline{v}_{μ} flux above 10 GeV threshold energy plotted against m_{χ} •~4 million scanned parameter sets

Detection Rate

Limits calculated for three years of taking data
Unified approach by Feldman-Cousins used
Background from atmospheric neutrinos and falsely reconstructed muons
3° radius search cone

🛑 not excludable

mSugra models disfavoured by WMAP

- 90% CL excludable by ANTARES
- 90% CL excludable by KM3NeT
- not excludable

KM3NeT

artist impression

•ANTARES,NEMO and NESTOR work together to build km³-large detector in the Mediterranean

Detector proposal providing A_{eff} :

•225 lines in grid configuration

•36 Optical Modules per line

•21 PMTs (3") per OM

Limits on Neutrino Flux Parameter Space Regions

mSugra models favoured by WMAP

- 90% CL excudable by ANTARES
- 90% CL excludable by KM3NeT
- not excludable

mSugra models disfavoured by WMAP

- 90% CL excludable by ANTARES
- 90% CL excludable by KM3NeT
- not excludable

Muon Flux

Comparison to other neutrino experiments
Site dependent quantity
Derived from neutrino flux through v to μ conversion rate extracted from DarkSUSY for different m_x (approximation)

not excludable

Direct Detection

•Comparison to direct detection experiments sensitive to spin independent WIMP-nucleon crossection

•Spin dependent scattering limits not yet low enough to put constraints on mSugra Dark Matter

CDMS: arXiv:0802.3530 XENON: arXiv:0706.0039

mSugra models favoured by WMAP

- 90% CL excudable by ANTARES
- 90% CL excludable by KM3NeT
- 🛑 not excludable

mSugra models disfavoured by WMAP

- 90% CL excludable by ANTARES
- 90% CL excludable by KM3NeT
- not excludable

Summary/Outlook

- Limits on mSugra Dark Matter possible within three years of taking data
- Neutrino Telescopes complementary and competitive to direct-detection experiments
- New scans done for mSugra, (GMSB), AMSB and pMSSM with new DarkSUSY version and Suspect RGE code (Andi Spies)
- Working on low energy reconstruction to improve sensitivity