Optischer Follow-Up von IceCube Neutrino-Bursts

Anna Franckowiak Humboldt Universität zu Berlin

Inhalt

Physikalische Motivation

- Quellen: GRBs und SNe
- Technische Implementierung
- Auswertung der Analyse

Neutrino-Quellen: GRBs

- Fireball Shock Modell (Meszaros, Rees 1994)
 - Relativistische Jets mit Variationen (~1s)

Neutrinos-Quellen: SNe

 Ando & Beacom (PRL2005): Ein Teil der SNe bildet einen leicht relativistischen Jet (Γ~O(1))

Jet

Torus

- Jet bleibt in der Sternhülle stecken
- Photonen werden absorbiert

Vorhersage: Ein 1km³ Detektor misst 30 Neutrinos in 10s von einer SN im Abstand 10 Mpc innerhalb

Erwartetes Signal

Neutrino Bursts – Koinzident in

Zeit zwischen Events $\Delta T < 100 s$

Raumwinkelabstand zwischen rekonstruierten Richtungen $\Delta \Psi < 4^{\circ}$

Vorteil: Unterdrückung des Hintergrundes durch atmosphärische Neutrinos

Doublet Filter am Pol

- Input-Rate: ~1000Hz
- Bedingung: ~25 zufällige Doublets pro Jahr (~1.7mHz)
 - Beschränkung auf Nord-Hemisphere: Zenith>85°
 - Rekonstruktions-Qualität: RlogL≤8.85 AND ((NDirC≥7 AND LdirC≥225) OR Nch≥200)

Doublet Filter am Pol

- System läuft stabil:
 - Alerts ($\Delta \Psi < 4^{\circ}$, 25 pro Jahr)
 - Test-Alerts (4°<∆Ψ<7°, 120 pro Tag)</p>
- Gelöstes Problem:
 - Künstliche
 Lichtquellen
 (Flashers) im
 Detektor

Optische Nachfolge: ROTSE

ROTSE

- Erhaltene Trigger werden nach Priorität abgearbeitet: IceCube Trigger habe zweit-höchste Priorität nach GCN Triggern
 - Erste Nacht: zehn 5 sec, zehn 20 sec, zwanzig 60 sec Aufnahmen
 - 14 folgende Nächte: Acht 60 sec Aufnahmen jede Nacht

→ Image subtraction

subtraction

Auswertung der Analyse

http://icecube.physik.hu-berlin.de/~afrancko/analyse_fup.pdf

Optischer Counterpart entdeckt

http://icecube.physik.hu-berlin.de/~afrancko/analyse_fup.pdf

Sensitivität: ROTSE und IceCube

- ROTSE: limitierende Magnitude: 18.5
- Annahme: gleichmäßig verteilte SN mit Mag. -18

 IceCube: Modell von Ando und Beacom

Signifikanz

Keine Optischer Counterpart

http://icecube.physik.hu-berlin.de/~afrancko/analyse_fup.pdf

Limit auf Modellparameter

 Oberes Limit auf Zahl von SNe, die eine Koinzidenz hätten erzeugen können

 $N_{\rm ROTSE}^{\rm IC} < 2.44 \text{ (for 90\% CL)}$

 Diese Zahl hängt von der Jetenergie und dem Anteil der SN die eine Jet produzieren ab:

$$\rho_{2e-4}^{\rm SN} (\epsilon_{3e51}^{\rm jet})^{3/2}$$

Zusammenfassung

- Modell-Vorhersage: GRBs und SNe erzeugen Neutrino-Bursts
 - Neutrinos können in IceCube gemessen werden
 - Optischer Counterpart mit ROTSE
- Technische Implementierung der Filters abgeschlossen
- Weiterleitung der Trigger an ROTSE ab Ende Oktober

SN Neutrino Spektrum

 Neutrinos-Spektrum nach Vorhersage von Ando&Beacom

Δt_d -Bestimmung

Real life example: SN2008D, explosion time known by initial x-ray flash

Auflösung

Doublet-Richtung

IceCube: ein Kubikkilometer großer Neutrinodetektor

1 km

IceCube

Digitale Auslese-Elektronik

Photonvervielfacher Röhre

Neutrino-Nachweis

Wechselwirkung

Myon

Detektor

Neutrino