

Cosmic Rays at the Highest Energies

Results from the Pierre Auger Observatory ERRE

Karl-Heinz Kampert (Bergische Universität Wuppertal, Fachbereich Physik)

- Motivation (more general)
- The Pierre Auger Observatory
- Some Results
 - Energy Spectrum: GZK
 - Photons
 - Neutrinos
 - Arrival Directions
- Discussion

bmb+**f** - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

The simple world of CRs

Source: Nucleosynthesis, stellar atmosphere..

Acce	erator:
Superr	novae?

B-Field TeV e^{\pm} Synchrotron Rad. Propagation: Spallation, radioactive decays, magnetic fields, exotic stuff ...

Inverse Compton Scatt.

solar modulation

Hadronic Interactions

Earth atmosphere

Ultra High-Energy Cosmic Rays

10²⁰ eV CRs in our Galaxy ?

Lamor radii at 10²⁰ eV compared to Milky-Way

Interesting feature: Can do astronomy with cosmic rays !

Conjecture: Extragalactic origin Karl-Heinz Kampert, Universität Wuppertal

? Possible Candidates ?

AGN Jets and Radio-Lobes

Cygnus A (z=0.056, d \approx 210 Mpc 5 GHz image, ø \approx 20 kpc)

100 Mpc = 326 Mio. Lightyears

3C 219 (FR II)

z=0.1745, d≈800 Mpc

0

Astroteilchenschule Obertrubach, Okt. 2008

Problem: CMBR

/978 WMAP 2006

Universe is filled with 3K photons: 412/cm³ Discovered 1965 by Penzias and Wilson

GZK-Effect requires nearby Sources

GZK-Effect requires nearby Sources

Astroteilchenschule Obertrubach, Okt. 2008

Science Case

What & Where are the nearby Sources ?

• How do they work ?

need to measure: direction, energy, particle-type

By-Products:

• Do Particle Physics at the Highest Energies,

e.g. pA and v-sections

• Probe Fundamental Physics, e.g. Tests of LIV

• Learn about Cosmic Environments, e.g. B-Fields

UHECR Experiments: Past-Present-Future

HiRes-I & II ~1000 km²

AGASA

100 km²

Auger 3000 km² - Starting the Golden Hybrid Era -

analysis only

Telescope Array 860 km²

operatina

Auger-North

Construction

~20000 km²

NTOR

Measuring high energy CRs

Energy Flow in EAS (lin)

~ 90 % of primary energy dumped into atmosphere

Energy Flow in EAS (log)

~ 90 % of primary energy dumped into atmosphere

EAS Observables

Fluorescence Spectrum

Fluorescence yield ~ 4 photons / electron / metre (isotropic !) (overall efficiency ~ 5x10⁻⁵; Cherenkov ~ 10⁻³)

Pierre Auger Observatory

Hybrid-Concept...

1600 Water Ch-Detect.
on 1.5 km triangular grid
⇒ 3000 km² area
(optimized to E>10¹⁹ eV)

simultaneously measured with fluorescence light

southern exp. nearly finished northern exp. planned

Rio Negro

Urugua

Lago Nahuel Huapi

Lanin

Chile

Pierre Auger Collaboration

OBSERVATORY

~370 collaboration members in 63 Institutes from:

Argentina		Netherlands	Bolivia*
Australia		Poland	Vietnam*
Brasil		Portugal	*Associated
Czech		Slovenia	ASSociated
France	U- & FZ-Karlsruhe	Spain	
Germany U-Wuppertal		UK	
Italy	RWTH-Aachen U-Bonn (MPIfR)	USA	
	U-Hamburg U-Frankfurt		

Pierre Auger Observatory in Argentina

1600 Water Cherenkov tanks

1.5 km grid1650 tanks deployed1600 taking data

24 telescopes in 4 buildings at the boundary

3000 km² area official inauguration: next month !

Stonehenge

Pierre Auger Observatory Fluorescence Telescope building

Camera System of Auger

24 telescopes (6 per site) 12 m² mirrors, Schmidt optics 30°x30° deg field of view 440 PMTs/camera 10 MHz FADC readout

opt. Filte UV optical filter Camera with 440 PMTs

FD Observation & Reconstruction

FD Observation & Reconstruction

The Auger Ground Array

1600 Water Cherenkov tanks 12,000 ltrs of purified Water (1.2 m height, 10 m² area)

Three 9" PMTs 40 MHz FADCs solar powered GPS based timing micro-wave communication

Water or Scintillators? What to choose?

Advantages of scintillators:

- much light ⇒ may use cheaper PMTs
- less sensitive to abundant photons close to shower core

30

Advantages of water:

- large volumes easy and cheap to realize
- large cross-section to horizontal showers

How to choose depth of water ?

- muon signal

 water depth
- low energy electrons absorbed mostly within upper 30-40 cm
- \rightarrow can be optimized for `µ-counting'

Installation Chain

Water deployment

Secret Business: Honeyiarm Auger

10 kg of honey

Karl-Heinz Kampert – University Wuppertal

Detector Calibration

Ground-Array Throughgoing Muons

ADC bins

Fluorescence Telescopes

VEM Peak

EIGLUY Spectum

SD Event & Reconstruction

Ground Array Calibrated by FD

Energy Spectrum & GZK-Effect

Auger & HiRes Energy-Spectrum

Auger Spectrum & Source Distr.

Composition Photons

Photons: Physics Case

Top-Down Models, like Super-Heavy Dark Matter Models, topological defect, Z-Burst-Models, etc. **predict photon** and **neutrino dominance**

relatively save to simulate E [eV]

- relatively easy to separate from hadron primaries
- never done by observation of longitudinal profile

Photon Signatures in Ground Arrays

UHE-Photon Limits: Results

Tests of Lorentz Invariance Violation

Galaverni & Sigl LIV
→ may modify photon dispersion relation PRL 100, 021102 $\omega^2 = k^2 + m^2 + \xi_n k^2 (k/M_{Pl})^n$ (2008); see also Maccione arXiv: → affect the threshold for e⁺e⁻ pair production 0805.2548 $\rightarrow p + \gamma_{CMB} \rightarrow \Delta \rightarrow p + \pi^0$ $\rightarrow \gamma \gamma \not\rightarrow e^+ e^- \quad \text{cascading of UHE}$ photons suppressed 100 fraction photon flux/nucleon flux [%]10 expect significant photon Auger upper limits fraction above ~ 10^{19} eV 10^{-1} $\xi_1 \le 2.4 \times 10^{-15}$ no LIV $\xi_2 \ge -2.4 \times 10^{-7}$ 10^{-2} ^{10⁻³} Auger: 7 orders of magnitudes Astropart. Phys. 29 (2008) 234 better than previous limits! 10^{21} 10¹⁹ 10^{20} E (eV)

Composition Nguinos

Search for Earth-skimming v_{τ}

Largest Source of Uncertainty: QCD structure function & X-section

Arrival Directions

Anisotropy Searches

1 Galactic CenterAGASA & SUGAR: yes

 $E_1 < E_2 < E_3$

AUGER: not at this level

2 Multipole Search (Large scale anisotropy)

no evidence yet...

3 Point Sources BL Lacs HiRes: yes

4 Cluster Search (Autocorrelation)

AGASA: yes

Auger: No HiRes: ??

HiRes: No Auger: at different scale

Anisotropy Search Method

Véron-Cetty & Véron (VCV) catalog of quasars and AGNs

Take CR source candidates from some catalog, e.g. VCV

Probability to find a single event of an isotropic distr. within a certain opening angle from a source. $p = p(\psi, n_{sources}) = p(\psi, z_{max})$

Probability that k or more of N isotropic events correlate by chance:

$$P = \sum_{j=k}^{N} \binom{N}{j} p^{j} (1-p)^{N-j}$$

Analysis Strategy for AGN-correlation

Two-step analysis

- Exploratory search to determine the optimal parameter set that maximizes the correlation
 - Z_{max} = 0.018 (D_{max} = 75 Mpc)
 - $E_{th} = 56 \text{ EeV}$
 - Ψ = 3.1° (p = 0.21)

Véron-Cetty - Véron Cataloguee

 Test of the correlation with independent data to determine the chance probability of the correlation using the parameter set determined in the exploratory scan

	# events E > 57 EeV	# correlated with AGN	# expected for isotropy
Exploratory set 1 Jan 04 – 26 May 06	15	12	3.2
Independent set 26 May 06 – 31 Aug 07	13	8	2.7

Chance probability in independent set : < 1%</p>

AGN Correlation Plot

Properties of Correlation Signal

Auger; arXiv:0712.2843 Correlation with AGN positions established by new data → redo scan of correlation parameters with improved statistics

Parameters of exploratory search confirmed by full data set !

E[eV]

Correlation Strength as fct of E

Auger; APP29 (2008) 188

Effect of Galactic Plane

In total 27 events at E > 57 EeV, 20 of which correlate

5 of the 7 non-correlating events from nearby the galactic plane

likely to happen because of incomplete catalogue and large deflections in magnetic fields

Do we understand the correlation?

Correlation with LSS ?

Kashti & Waxman, arXiv:0801.4516

Correlation with SGP

T. Stanev, (arXiv:0805.1746):

strong correlation of Auger event with supergalactic plane even stronger for redefined supergalactic plane

Or few sources and heavy primaries ?

Auger vs HiRes

red dots: 13 HiRes events

black dots: 27 Auger events

Note: HiRes is located in Northern Hemisphere, Auger in Southern D. Harari but 9 (11) of 13 events of HiRes in Auger exposure region....

Auger vs HiRes

red dots: 13 HiRes events

black dots: 27 Auger events

Note: HiRes is located in Northern Hemisphere, Auger in Southern but 9 (11) of 13 events of HiRes in Auger exposure region....

What does all this tell us ?

1) No doubt about existence of UHECR anisotropies

- 2) Be careful when interpreting correlation parameters opening angle and redshift (both are likely biased)
- 3) Question about AGNs being tracers or sources cannot 12 be answered yet

4) Need to account also for AGN specific properties and study their effects

5) Need more event statistics (factor of 2 by end of this year)

AUGER NORTH IN SE-COLORADO

Plan: 20 000 km² SD with √2 miles grid + FD with full coverage

Karl-Heinz Kampert – University Wuppertal

Summary

- GZK established (seen by Auger and HiRes)
 Top-Down models almost ruled out by absence of UHE photons & neutrinos
- Trans-GZK events correlate with AGN positions entering era of CR-Astronomy
- **Establish CR sources and verify in** v and γ telescopes
- Multi-Messengers becomes reality (CR-Lumi $\rightarrow v \& \gamma$ -flux)
- Questions of Fundamental Physics addressed
- Several Puzzles remain; Need to understand
 - Energy spectrum
 - Mass composition
 - Directional distributions

consistently !

Pierre Auger Observatorium Öffentlicher Ereignis-Betrachter

http://auger.uni-wuppertal.de/ED/ Öffentlicher Ereignis-Betrachter

Herzlich Willkommen beim öffentlichen Ereignis-Betrachter des Pierre Auger Observatoriums.

Die Pierre Auger-Kollaboration hat beschlossen, 1% der Daten öffentlich verfügbar zu machen. Auf dieser Webseite, die täglich aktualisiert wird, können die seit 2004 gesammelten Ereignisse angezeigt werden.

Sie können eine Ereignisnummer (ID) im Suchfenster eingeben, das Menü "Ereignis-Selektion" benutzen oder ein Ereignis anschauen, das schon im Cache geladen ist. Zum Abspeichern auf dem eigenen Computer steht eine <u>ascii Datei</u> mit allen Ereignissen zur Verfügung.

Der aktuelle Datensatz besteht aus 8507 Ereignissen mit Energien zwischen 0 <u>EeV</u> und 41.1 <u>EeV</u>. Das letzte Ereignis hat die ID <u>4507700</u> und der Zeitpunkt der Messung war Feb 05 2008 04:34:52, UTC Time.

Ereignisse im Zwischenspeicher

Die 3 meistbetrachteten Ereignisse

Alle zwischengespeicherten Ereignisse, geordnet nach ihrer Energie, mit Anzeigehäufigkeit (längerer Balken bedeutet häufiger betrachtet):

000004128900:	41.05 <u>EeV</u> ,	18 Stationen, 54.5 Grad	
000001234800:	37.36 <u>EeV</u> ,	14 Stationen, 43.4 Grad	
000001673300:	33.10 <u>EeV</u> ,	11 Stationen, 32.3 Grad	
000002126300:	32.84 <u>EeV</u> ,	14 Stationen, 53.4 Grad	80

Ereignis-Be	serva trach	torium ter	
Ereignis-Selektion			
	Min	Max	
Anzahl Stationen	5		
Zenitwinkel	0	60	
Energie (EeV)	5		
Sortiert Datum (rückwärts) Zeige 10 = Ereignisse Suchen			
Cebe zu Freignis 1234800			
Det at the second second			
		FAQ Über	
Impressum astro.	uni-v	FAQ Über	
Impressum astro.	uni-v	FAQ Über vuppertal	
Impressum astro.	uni-w	FAQ Über	
Impressum astro.	uni-v	FAQ Über	
Impressum astro.	uni-v	FAQ Über	

Pierre Auger Observatorium Öffentlicher Ereignis-Betrachter

http://auger.uni-wuppertal.de/ED/ Ereignis 1234800

Ansicht der rekonstruierten Daten | Ansicht der Stations-Daten

Die Herkunftsrichtung des Ereignisses: Galaktische Länge: 267.0 ± 0.6 Grad Galaktische Breite: -69.8 ± 0.2 Grad

Bild 4: Ankunftsrichtung des Ereignisses

Das Hintergrundbild ist gemessen von EGRET (Gamma-Strahlungshimmel über 100 MeV, von EGRET). Das Ereignis ist mit einem blauen Kreis markiert, und die gestrichelte Linie kennzeichnet den für das südliche Pierre Auger Observatorium sichtbaren Himmel

Pierre Auger Observatorium Ereignis-Betrachter			
Ereignis-Se	elekti	on	
	Min	Max	
Anzahl Stationen	5		
Zenitwinkel	0	60	
Energie (EeV) 5			
Sortiert Datum (rückwärts) Zeige 10 Suchen			
Gehe zu Ereignis 1234800			
Ereignis 1234800			
Ansicht der rekonstruierten Daten			
Ansicht der Stations-Daten			
🔁 🚺 💽 💽 🚺 F AQ Über			
Impressum astro	.uni-v	vuppertal	

Pampa Amarilla

