

Setup and production of the wire electrode for KATRIN

Outline

- Motivation and overview of the KATRIN experiment
- Wire electrode setup
- Wire electrode production
- Summary and outlook

Introduction

- 1930: Pauli postulates electron neutrino to explain continuous beta spectrum
- Neutrinos first assumed massless
- Neutrino oscillation experiments have proven that v's must have mass but: absolute mass scale not known
- Absolute neutrino mass important parameter for particle physics and astrophysics
- current upper limit: m(√)_e)≈2.3eV (Mainz)

KATRIN goals with 3 years worth of data: upper limit of m(\overline{v}_{e})=0.2eV (90% C.L.)

Direct neutrino mass measurement

- determination of m($\overline{\nu}_{a}$) from kinematics of Tritium beta decay
- Tritium: ideal β emitter for this purpose: E

$$_{1/2} = 18.6 \text{ keV}$$
 $T_{1/2} = 12.3 \text{ a}$

Simplified form of the β spectrum:

Requirements:

- high energy resolution
- large solid angle ($\Delta \Omega \sim 2\pi$)
- low background rate

Michael Zacher

IK, WWU Münster

Astroteilchenschule 2007

05.02.2007

MAC-E filter

Magnetic Adiabatic Collimation with Electrostatic Filter

- electrons gyrate around magnetic field lines
- only electrons with E_{II} > eU₀ can pass the MAC-E filter
 - \rightarrow Energy resolution depends on ΔU_0 and on E_{\perp}
- B drops by a factor 20000 from solenoid to analyzing plane,

 $\mu = E_{\perp} / B = const. \longrightarrow E_{\perp} \rightarrow E_{\parallel}$

•
$$\Delta E = E \frac{B_{min}}{B_{max}} \approx 1 \,\mathrm{eV}$$

• MAC-E filter acts as a high pass filter with a sharp transition function

A. Picard et al., Nucl. Instr. Meth. B 63 (1992)

Differential pumping section

- e- guided along beamline by strong magnetic fields
- T₂ removed by TMPs in kinks

Cryo pumping section

- T = 4K
- argon frost as cryo pump
- B = 5.6 T

Main-Spectrometer (MAC-E)

- @ 18.6 keV (endpoint)
- 1 eV resolution
- p < 10⁻¹¹ mbar

IK, WWU Münster

Astroteilchenschule 2007

KATRIN main spectrometer

Michael Zacher

IK, WWU Münster

Astroteilchenschule 2007

05.02.2007

6

Transport of the main spectrometer: Deggendorf to Leopoldshafen

Michael Zacher

IK, WWU Münster

Astroteilchenschule 2007

05.02.2007

7

Principle of the wire electrode

- Cosmics and radioactive contamination can mimic e⁻ in endpoint energy region
- 650m² surface of main spectrometer
 - \rightarrow ca. 10⁵ μ / s + contamination
- Reduction due to B-field: factor 10⁵⁻¹⁰⁶
- Real signal rate in the mHz region
- Additional reduction necessary

- Proof of principle at Mainz MAC-E filter
 - → at 200 V shielding potential the background rate was reduced by a factor 10 with a single layer electrode

υ-δυ

Michael Zacher

IK, WWU Münster

Wire electrode setup

9

05.02.2007

Astroteilchenschule 2007

Module setup

Wire specifications

- wire sag and position ≤0.2mm
- outer layer 0.3mm@10N
- inner layer 0.2mm@5N
- test measurements show: elasticity of wires changes during first bake-out cycle
- → wires need to be tempered before assembly

- tempering:
- → need to rewind the wire to stainless steel coil
 wires are drawn through oil during production
 → need to clean the wires before tempering!
 → do this in one step!

Cleaning and rewireing ultrasonic bath

- 2x 1.5kW ultrasonic bath
- can be filled with Almeco or (ultra-)pure water
- shower with ultrapure water
- wires guided through two basins filled with Almeco and pure water

wires stay ≈ 10m ≈ 1min in each bassin

Michael Zacher

IK, WWU Münster

Astroteilchenschule 2007

05.02.2007

Wire production tempering in UHV oven

UHV oven for tempering: 2h@350°C

<u>Test:</u> mount tempered and untempered wires on test module and bake out

bake out response of tempered and untempered wires, Vogelsang 0,3mm

Comb production

- combs cut by waterjet

 holes are drilled and serial number is milled in

comb gets electropolished
cleaning of combs in ultrasonic bath

Westfälische Wilhelms-Universität Münster

Production in the cleanroom (1/3) Cutting the wires to desired lenght

- need to stay in elastic region of the wires
- precise wire length determines tension on the module
 - \rightarrow cut wires under tension
 - \rightarrow cutting position adjusted by µm-screw

Michael Zacher

IK, WWU Münster

Astroteilchenschule 2007

05.02.2007

Production in the cleanroom (2/3) Assembly

- attach first ceramic insulator to wire
 insert wire losely in combs
 attach second ceramic
- 4) complete module by inserting cprofiles

Michael Zacher

IK, WWU Münster

Astroteilchenschule 2007

05.02.2007

16

Production in the cleanroom (3/3) measurements and QA

<u>camera</u>

- measure comb geometry using image processing software
- QA of assembled modules (ceramics)

laser sensor - positioning of wires

- tension of wires by measurement of wire oscillation

Michael Zacher

Transportation of the modules to Karlsruhe

- Mount 2 modules in one transport frame
- packaging: 3 layers of PE-foil:
 - inner clean layer, only exposed to clean room at FZK
 - middle layer, removed in the anteroom at FZK, buffer
 - outer layer, to be removed after transport to FZK
- transport to FZK via truck
- details about protecting the modules against vibrations and shocks during transport currently being planned

- KATRIN will provide highly sensitive, direct measurement of electron neutrino mass
- Dual layer wire electrode provides high background reduction and possibility to shape electric fields inside the main spectrometer
- Prototypes for the central and conical parts of the spectrometer have been produced and tested
- Mass production of electrode components is in process

Summary

The KATRIN collaboration

The end

Michael Zacher